
NEAT
A New, Evolutive API and Transport-Layer Architecture for the Internet

H2020-ICT-05-2014
Project number: 644334

Deliverable D4.3
Validation and evaluation results

Editor(s): Zdravko Bozakov
Contributor(s): Anna Brunstrom, Dragana Damjanovic, Kristian Evensen, Gorry Fairhurst,

Audun Fosselie Hansen, Fredrik Haugseth, David Hayes, Thomas Hirsch,
Tom Jones, Naeem Khademi, Patrick McManus, Andreas Petlund, David Ros,
Tomasz Rozensztrauch, Ricardo Santos, Daniel Stenberg, Michael Tüxen,
Eric Vyncke, Hugo Wallenburg, Felix Weinrank, Michael Welzl

Work Package: 4 / Validation and evaluation
Revision: 1.0
Date: May 2, 2018
Deliverable type: R (Report)
Dissemination level: Public

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Abstract

This document presents the main experiments carried out in WP4 for validation and

evaluation of the NEAT System. Based on the test plan proposed in Deliverable D4.2 [11],

the report provides a detailed overview of the test setups, equipment configurations, mea-

surement methodologies and evaluations for each of the four industrial use cases devel-

oped in WP1. We demonstrate the feasibility of the developed NEAT approaches in real-

istic environments underlining the relevance of the designed solutions in the context of

the industrial use cases, related to the partners’ business needs. The experiments exercise

key components of the core transport system designed in WP2, and highlight important

research outcomes from WP3, related to the extended transport system and transport en-

hancements developed in the latter work package.

Furthermore, the document includes a discussion on the future of NEAT with an em-

phasis on NEAT’s impact on scalability on a global scale as well as scalability aspects that

relate to the end-host stack. Finally, the influence of the work carried out in NEAT on IETF

standardisation efforts, in particular on a future standard transport API, is summarised.

Participant organisation name Short name

Simula Research Laboratory AS (Coordinator) SRL

Celerway Communication AS Celerway

EMC Information Systems International EMC

MZ Denmark APS Mozilla

Karlstads Universitet KaU

Fachhochschule Münster FHM

The University Court of the University of Aberdeen UoA

Universitetet i Oslo UiO

Cisco Systems France SARL Cisco

2 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Contents

List of Abbreviations 4

1 Introduction 8

2 Experimental results 8

2.1 Celerway use case . 9

2.1.1 Test topology . 11

2.1.2 Test implementation . 11

2.1.3 Results . 13

2.1.4 Key findings and implications . 15

2.2 Cisco use case . 15

2.2.1 Test topology . 16

2.2.2 Test implementation . 21

2.2.3 Results . 22

2.2.4 Key findings and implications . 28

2.3 Mozilla use case . 29

2.3.1 Test topology . 29

2.3.2 Test implementation . 30

2.3.3 Results . 30

2.3.4 Key findings and implications . 36

2.4 EMC use case . 36

2.4.1 Test topology . 37

2.4.2 Test implementation . 37

2.4.3 Results . 38

2.4.4 Key findings and implications . 51

3 The future of NEAT 51

3.1 Scalability . 52

3.1.1 Towards more aggressive protocols? . 52

3.1.2 Why is there a need for choice? . 53

3.1.3 Local scalability . 54

3.2 Evolution towards a standard API with implementation guidance 60

4 Conclusions 62

References 63

A NEAT Terminology 67

B SDN controller policies for handling elephant flows 70

C How to build and test NEAT applications in MONROE 72

C.1 Creating NEAT-enabled MONROE experiments . 72

C.2 MONROE metadata, Policy Manager and CIB . 75

3 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

List of abbreviations

AAA Authentication, Authorisation and Accounting

AAAA Authentication, Authorisation, Accounting and Auditing

API Application Programming Interface

BE Best Effort

BLEST Blocking Estimation-based MPTCP

CC Congestion Control

CCC Coupled Congestion Controller

CDG CAIA Delay Gradient

CIB Characteristics Information Base

CM Congestion Manager

DA-LBE Deadline Aware Less than Best Effort

DAPS Delay-Aware Packet Scheduling

DCCP Datagram Congestion Control Protocol

DNS Domain Name System

DNSSEC Domain Name System Security Extensions

DPI Deep Packet Inspection

DSCP Differentiated Services Code Point

DTLS Datagram Transport Layer Security

ECMP Equal Cost Multi-Path

EFCM Ensemble Flow Congestion Manager

ECN Explicit Congestion Notification

ENUM Electronic Telephone Number Mapping

E-TCP Ensemble-TCP

FEC Forward Error Correction

FLOWER Fuzzy Lower than Best Effort

FSE Flow State Exchange

FSN Fragments Sequence Number

GUE Generic UDP Encapsulation

H1 HTTP/1

4 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

H2 HTTP/2

HE Happy Eyeballs

HoLB Head of Line Blocking

HTTP HyperText Transfer Protocol

IAB Internet Architecture Board

ICE Internet Connectivity Establishment

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IF Interface

IGD-PCP Internet Gateway Device – Port Control Protocol

IoT Internet of Things

IP Internet Protocol

IRTF Internet Research Task Force

IW Initial Window

IW10 Initial Window of 10 segments

JSON JavaScript Object Notation

KPI Kernel Programming Interface

LAG Link Aggregation

LAN Local Area Network

LBE Less than Best Effort

LEDBAT Low Extra Delay Background Transport

LRF Lowest RTT First

MBB Mobile Broadband

MBC Model Based Control

MID Message Identifier

MIF Multiple Interfaces

MPTCP Multipath Transmission Control Protocol

MPT-BM Multipath Transport-Bufferbloat Mitigation

MTU Maximum Transmission Unit

NAT Network Address (and Port) Translation

5 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

NEAT New, Evolutive API and Transport-Layer Architecture

NIC Network Interface Card

NUM Network Utility Maximization

OF OpenFlow

OS Operating System

OTIAS Out-of-order Transmission for In-order Arrival Scheduling

OVSDB Open vSwitch Database

PCP Port Control Protocol

PDU Protocol Data Unit

PHB Per-Hop Behaviour

PI Policy Interface

PIB Policy Information Base

PID Proportional-Integral-Differential

PLPMTUD Packetization Layer Path MTU Discovery

PLUS Path Layer UDP Substrate

PM Policy Manager

PMTU Path MTU

POSIX Portable Operating System Interface

PPID Payload Protocol Identifier

PRR Proportional Rate Reduction

PvD Provisioning Domain

QoS Quality of Service

QUIC Quick UDP Internet Connections

RACK Recent Acknowledgement

RFC Request for Comments

RSerPool Reliable Server Pooling

RTT Round Trip Time

RTP Real-time Protocol

RTSP Real-time Streaming Protocol

SCTP Stream Control Transmission Protocol

6 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

SCTP-CMT Stream Control Transmission Protocol – Concurrent Multipath Transport

SCTP-PF Stream Control Transmission Protocol – Potentially Failed

SCTP-PR Stream Control Transmission Protocol – Partial Reliability

SDN Software-Defined Networking

SDT Secure Datagram Transport

SIMD Single Instruction Multiple Data

SPUD Session Protocol for User Datagrams

SRTT Smoothed RTT

STTF Shortest Transfer Time First

SDP Session Description Protocol

SIP Session Initiation Protocol

SLA Service Level Agreement

SPUD Session Protocol for User Datagrams

STUN Simple Traversal of UDP through NATs

TCB Transmission Control Block

TCP Transmission Control Protocol

TCPINC TCP Increased Security

TLS Transport Layer Security

TSN Transmission Sequence Number

TTL Time to Live

TURN Traversal Using Relays around NAT

UDP User Datagram Protocol

UPnP Universal Plug and Play

URI Uniform Resource Identifier

VoIP Voice over IP

VM Virtual Machine

VPN Virtual Private Network

WAN Wide Area Network

WWAN Wireless Wide Area Network

7 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

1 Introduction

This document presents the main outcomes of WP4 activities carried out in months 24–38. The main

scope of this report is on Task 4.3. The task focuses on the validation and evaluation of the experiments

carried our as part of the industrial use cases developed and refined in WP1. These experimental

activities build on previous WP4 work, i.e., porting selected existing applications to NEAT (reported

in Deliverable D4.1 [12]), developing NEAT-enabled tools and outlining an initial plan for testing (first

reported in D4.1 and updated in D4.2 [11]).

The motivation for the evaluations presented in this document is to demonstrate the feasibility

of the NEAT concepts and software implementation in realistic environments with a clear mapping

to use cases relevant to the core business of the involved industry partners. The industrial use cases

and the related experiments highlight: (a) some key components of the core transport system de-

veloped in WP2 (e.g., Happy Eyeballs, basic Policy system), and (b) aspects from the research on the

extended transport system and transport enhancements carried out as part of WP3. For the latter,

the experiments demonstrate the use of NEAT’s PvD integration, SDN datacenter integration through

the extended NEAT Policy Manager in the datacenter, deadline-aware LBE file transfers over WANs as

well as the use of NEAT proxies to optimise application performance in mobile broadband scenarios.

Finally, the document provides a discussion on two important aspects related to the possible evolu-

tion and future of NEAT: scalability and broader architectural implications of NEAT results via new

standards.

The rest of this document is structured as follows. In Section 2, we offer a detailed overview of

the experimental work carried out as part of the selected industrial use-cases. For each use-case, a

corresponding subsection provides a description of the test setup, equipment configurations, mea-

surement methodology and an evaluation of the generated results. The document builds upon the

test plan proposed in Deliverable D4.2 [11]. In Section 3 we discuss the evolution of NEAT with an

emphasis on NEAT’s impact on scalability on a global scale as well as scalability aspects that relate

to the end-host stack. Moreover, we discuss the influence of the work carried out in NEAT on IETF

standardisation efforts, in particular on a future standard transport API. Finally, Section 4 concludes

the document.

2 Experimental results

This section provides a brief overview of the four industrial use cases and the test platforms used for

their evaluation. In reference to the test plan proposed in D4.2 the subsequent sections summarize

the test procedures and objectives for each use-case and provide key results and insights from the

performed work.

In summary, four use cases were evaluated. The Celerway use case aims to demonstrate the ben-

efits of using NEAT in a mobile broadband context, particularly when the mobile broadband network

has NEAT support via Celerway proxies and routers. The Cisco use case uses the NEAT System to lever-

age discoverable network properties supplied by PvD to improve application QoS. The Mozilla use

case looks at the use of NEAT’s protocol selection mechanisms by a NEAT port of Firefox. The EMC

use case evaluates the benefits of NEAT’s SDN integration in the context of using MPTCP to improve

flow completion times in datacenter environments. Furthermore, the benefits of deadline-aware, less-

than-best effort (DA-LBE) mechanisms for WAN file transfers is evaluated.

8 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

The project partners are operating three testbeds to evaluate the NEAT library, NEAT mechanisms

and industrial use cases defined in WP1. The testbeds offer a controlled experimentation platform

where solutions can be deployed and tested in an environment that resembles real-world conditions.

Table 1 provides a summary of the industrial use cases and the environments in which these were eval-

uated. Tests executed in these testbeds are augmented with results generated by experiments carried

out on public Internet paths and/or lab setups, where appropriate. Applications ported to NEAT that

were used for use-case testing were reported in Deliverable D4.2 [11], and are also referenced in the

subsequent use case sections.

Table 1: Relevant test environments and applications/tools for testing the industrial use cases.

Use case Test environment∗ Most relevant applications and/or tools†

Celerway MONROE testbed
Multi-homed download manager
PM diagnostics

Cisco UoA Internet testbed
NEAT-streamer
PM diagnostics

Mozilla Lab setup
Firefox
nghttp2

EMC INFINITE testbed
Rsync
PM diagnostics

† NEAT-streamer and the NEAT ports of Firefox and Rsync are presented in detail in Deliverable D4.1 [12].
∗ A detailed description of the testbeds is provided in Deliverable D4.2 [11].

2.1 Celerway use case

The Celerway use case is evaluated on the MONROE platform (detailed in deliverable D4.2 [11]) and

aims to show the benefits of using NEAT in a mobile broadband (MBB) context, particularly when the

mobile broadband network has NEAT support via Celerway proxies and routers.

The Celerway use case includes NEAT components as illustrated in Figure 1. This involves pop-

ulating the PIB with relevant policies (step 0.1). Furthermore, the use case includes algorithms for

collecting interface and networks statistics as metadata and active and passive measurements. This

involves CIB sources that populate the CIB (step 0.2). Next, application requirements are learned via

the NEAT User API (step 1) on a client device, or alternatively via signalling or by inferring application

needs on network elements like router and proxy.

Next, the NEAT Framework (step 2) will through the NEAT Policy Interface (step 3) initiate the NEAT

Policy Manager (PM) (step 4). The PM matches policies (PIB) and characteristics (CIB) with applica-

tion needs (step 5) to make a selection of interface (step 6). This decision may be based on probing

information and cached in the CIB. Next the NEAT transport component (step 7) connects to the host

(step 8).

In order to test the Celerway use case, we have developed a set of CIBs and PIBs focusing partic-

ularly on mobile broadband, developed two applications using NEAT, and implemented NEAT in the

H2020 MONROE platform as described in deliverable D4.2 [11].

NEAT in MONROE: A MONROE node runs the same software as a Celerway router, and it can con-

nect to three mobile broadband networks, WiFi and Ethernet simultaneously. A MONROE node can

9 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Data	
 transfer	

applica.on	
 NEAT	
 User	
 API	

NEAT	

Framework	

NEAT	
 Policy	
 Interface	

NEAT	
 Policy	

Manager	

PIB	
 CIB	
 CIB	

sources	

NEAT	

Selec.on	

NEAT	

Transport	

Connec.on	

to	
 host	
 B	

1

0.2 0.1

2 3 4

5 5

6

7

8

Figure 1: Interaction of NEAT Components in Celerway’s specific use case.

act either as a client supporting NEAT-enabled applications, or as a proxy supporting non-NEAT ap-

plications. A detailed description of how to implement a NEAT application in MONROE is presented

in Appendix C. Implementation of Celerway’s use case includes the following elements:

• Deployment of the NEAT System on MONROE nodes. This also makes NEAT available to MON-

ROE users so that they can plan and build experiments based on the NEAT architecture.

• Extension to MONROE’s metadata exporting mechanism to export metadata to the NEAT PM

(CIB). The Metadata exporter is one of the key components of the MONROE architecture. It col-

lects information about available mobile networks and their properties and makes it available to

other components. The Metadata exporter is designed to be easily extended in order to support

new formats and new data recipients. In order to satisfy NEAT requirements, Celerway has built

an extension that exports the data to the PM via a Unix domain. The PM then stores the data in

a CIB.

In addition, network quality estimates are exported. The NEAT PM is notified immediately upon

every detected change in network properties and quality.

• Design and implementation of experiments to be run on a set of MONROE nodes. An experi-

ment in MONROE terminology is an application that runs in an isolated environment (Docker

container) and has access to selected network interfaces and related metadata. NEAT applica-

tions and non-NEAT applications can be scheduled on a selected set of MONROE nodes for an

agreed period of time. Collected results are then available to the experimenter for analysis.

Celerway CIBs and PIBs: We have developed a CIB source and set of policies that collect and use

information about network performance and metadata to make optimal interface selections. The CIB

is populated with mobile broadband metadata for every available interface (table 2). The CIB is also

populated with quality indications (0, 1 or 2, where 2 is the best network quality). This quality indicator

is a result of a combination of passive and active measurements in Celerway routers.

Based on the CIB entries, we have specified policies in terms of scores that are stored as PIB. The

interface with the highest total score — computed as the sum of the individual scores for each meta-

data value — is used by NEAT. Table 3 shows the scores for different metadata values and Celerway

10 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Table 2: CIB mobile broadband properties.

Property Possible values

Technology mode, submode (LTE, 3G, 2G)

Signal Quality For 2G, 3G: rssi, rscp, ecio

For LTE: rssi, rsrp, rsrq

Cell location lac, cid

Network operator oper (MCCMNC code)

Device state device_state, ipaddr

quality indicators for modems. For instance, a modem with a quality indicator 2 on 4G, frequency =

800, RSRP = -87, RSRQ = -4 would in total get a score of 64 (= 30 + 20 + 3 + 3 + 8).

Table 3: Scores for different modem metadata values and the Celerway quality indicator for modems.

Quality indicator 0 1 2

Score 0 5 30

Mode 2G 3G 4G

Score 1 10 20

Frequency 1800 800 2600

Score 1 3 7

LTE RSRP -140 to -112 -111 to -84 -84 to 0

Score 0 3 8

LTE RSRQ -20 to -11 -10 to -6 -5 to 0

Score 0 3 8

RSSI (3G and 2G) -128 to -95 -94 to -70 -69 to 0

Score 0 5 15

2.1.1 Test topology

Figure 2 depicts the topology that served as the basis for the experiments in Test 2. The test setup was

comprised of the key components listed in Table 4.

In addition, we have used a local lab setup to measure the overhead of using NEAT and the NEAT

proxy (Test 1). This local setup consisted of one MONROE node as client and one MONROE node as

server with files to download and a TCP-Ping responder. They were connected with a 1Gbit/s Ethernet

cable.

2.1.2 Test implementation

Table 5 summarizes the experiments carried out as part of this use case. Specifically these tests were

as follows:

• Test 1 used the Download manager described in D4.2 [11] and TCP-Ping (with and without NEAT)

running in the local setup described above. In this case, both applications are NEAT applications

11 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Figure 2: Test topology for the Celerway use case. Client nodes are actually deployed in the MONROE
testbed, on-board high-speed trains.

Table 4: Components of Celerway’s use case testing environment.

Component Description

MONROE node as client Described in detail in deliverable D4.2 [11].

Non-NEAT applications Applications that are not using NEAT: Non-NEAT enabled Download
manager and TCP-Ping

NEAT applications Applications that are using NEAT: NEAT-enabled Download manager
and TCP-Ping.

NEAT proxy A proxy that fetches the non-NEAT traffic, infers needs and gives NEAT
behaviour.

LTE 1 A cat6 Sierra Wireless MC7455 modem connected to operator 1 (differ-
ent in different countries).

LTE 2 A cat6 Sierra Wireless MC7455 modem connected to operator 2 (differ-
ent in different countries).

Non-NEAT server An Intel NUC placed in Celerway’s office with an HTTP server, TCP-Ping
responder and 100 Mbit/s fiber link.

(i.e., Class-1 applications as described in D1.1 [17]) and non-NEAT applications (i.e., Class-0 ap-

plications as described in D1.1 [17]) using the proxy. They use CIBs and PIBs as described above.

The main metric is overhead of using NEAT in terms of CPU and memory usage.

• Test 2 used the Download manager described in deliverable D4.2 [11] and TCP-Ping (with and

without NEAT) running in the MONROE testbed described above. In this case, both applications

are NEAT applications (i.e., Class-1 applications) and non-NEAT applications ((i.e., Class-0 ap-

plications)). They use CIBs and PIBs as described above. The main metric is quality in terms of

throughput and RTT.

12 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Table 5: Experiments for Celerway’s use case testing.

Test ID Summary

1 Evaluate the overhead of NEAT and NEAT proxy on system resources

2 Evaluate the impact of NEAT CIBs and PIBs on NEAT applications in multi-homed mobile
scenarios

2.1.3 Results

Test 1 measured the overhead of using NEAT and the NEAT proxy in a local setup. We present the

results from using the Download manager as it introduced the largest overhead. Table 6 shows that

the policy manager adds some memory usage and that the proxy adds CPU usage. These numbers are

not critical for normal devices, but for smaller embedded devices the code might need some optimi-

sations.

Table 6: Overhead of using NEAT with CIBs, PIBs and proxy.

Application (Process) CPU (%) Memory (MB)

Non-NEAT Download Manager 13.8 1.9

NEAT

Download Manager 18.07 3.0

Policy Manager 0.89 21.6

CIB source 0.01 8.3

NEAT Proxy

Proxy 10.88 3.0

Download Manager 11.89 0.8

Policy Manager 1.48 21.4

CIB source 0.01 7.8

Test 2 measured the potential of NEAT with regards to quality improvement in multi-homed de-

vices. We ran multiple two-hour tests on mobile nodes with two active modems in MONROE. The

nodes were installed on high-speed trains. For each test we ran a sequence of TCP-Ping (each second)

for one minute and next fifteen seconds of download, both with NEAT and without NEAT. Measure-

ments were run at different times (to capture rush hour vs. non rush hour and rural vs. urban). We also

changed the policies to demonstrate the effect of those. Note that the policies were not fine-tuned for

these experiments; the purpose of these tests is just to demonstrate the potential of NEAT to achieve

better application performance.

Table 7 shows the average performance gains of using NEAT. Average gain means the percentage

decrease in RTT and percentage increase in throughput, for TCP Ping and Download respectively,

compared to the non-NEAT case. The experiments used some different policies just to get an indica-

tion of how that might affect results.

• Policy 1 uses all values from Table 3. In addition, the default interface for use without NEAT is

the interface that first gets an Internet connection on node boot.

13 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

• Policy 2 uses all values from Table 3 except scoring Frequencies. In addition, the default interface

for use without NEAT is the first registered interface after a network outage (not only node boot).

• Policy 3 uses the same values and interface as Policy 2, but scores for signal quality were changed

(they are shown in Table 8).

The results show that there is (as expected) variance in the results. However, they clearly demon-

strate the potential of NEAT.

Table 7: NEAT performance gains. No. of nodes means the number of nodes that were available and
ran the experiments. Average gain means the percentage decrease in RTT and percentage increase in
throughput, for TCP Ping and Download respectively compared to the non-NEAT case.

Start time Policy No. of nodes Average gain TCP-Ping Average gain Downloads

2018-03-15 13:36 1 36 5.7 21.7

2018-03-16 15:38 1 28 11.5 38.7

2018-03-20 12:10 2 26 −10.4 4.1

2018-03-20 20:13 2 15 17.1 1.8

2018-03-21 20:13 2 17 18.9 8.0

2018-03-21 14:10 2 20 1.3 9.9

2018-03-20 15:01 2 26 20.6 4.6

2018-03-21 18:09 2 5 19.9 46.7

2018-03-22 15:00 2 21 15.1 −0.2

2018-03-26 13:51 3 24 −4.2 11.0

2018-03-26 15:54 3 21 −10.6 8.9

2018-03-26 19:10 3 16 11.8 7.7

2018-03-26 21:13 3 15 −11.4 −4.3

2018-03-27 07:11 3 21 23.3 −2.0

2018-03-27 09:14 3 16 23.2 3.7

Table 8: Scores for signal quality in Policy 3.

LTE RSRP -140 to -112 -111 to -103 -102 to 0

Score 0 10 10

LTE RSRQ -20 to -12 -11 to -8 -7 to 0

Score 0 5 10

RSSI (3G and 2G) -128 to -95 -94 to -70 -69 to 0

Score 0 15 20

Further improvements The experiments and results presented above focus on interface selection

for single path transfers, and did not attempt to find optimal policies for every situation. NEAT could

also support multi-path transfers for instance with SCTP, which will be explored in more detail by

14 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Figure 3: Support for the SCTP transport protocol in MONROE.

Celerway in the future. Figure 3 shows the support for SCTP in MONROE. The potential of using SCTP

is well over 60% in the whole testbed, yet far from 100%. Thus, even if some mobile networks provide

adequate SCTP support, without support from NEAT the application would have to settle with TCP at

all times to secure connectivity.

2.1.4 Key findings and implications

The results presented above demonstrate the potential of using NEAT in multi-homed devices. The

policies have not been fine-tuned, but they serve as examples on how to use NEAT. We also saw that

NEAT adds some CPU and memory usage overhead that is not critical for normal devices, but for

smaller embedded devices, the code might need some optimisations.

2.2 Cisco use case

The Cisco use case is evaluated on the UoA Internet Testbed and in a Cisco Virtual Testlab (§ 2.2.1) and

aims to show the benefits of using NEAT in environments with network signalling. This requires net-

work paths to offer services to match application requirements for multimedia traffic. For example, a

two-way, live video connection can benefit from the ability to make decisions based on the properties

of the local network environment via measurements and/or network signalling.

The NEAT System has been designed to enable straightforward integration of network signals and

to allow the stack to act upon them when making selection decisions. Network signals provide one

way for the network to directly inform the NEAT stack about local network characteristics.

Provisioning Domains (PvDs) Provisioning Domains (PvD) [9] describe a set of consistent informa-

tion that identifies the characteristics of the service offered at a specific IP address or interface. This

can describe both measurable (e.g., latency, capacity) and non measurable (e.g., price per byte, cap-

tive portal) properties as well as network configuration information such as name servers and captive

portal locations. Signalling PvD information from the network to an endpoint enables the endpoint

15 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

N
EA

T-
st

re
am

er
 A

PP

WiFi IF

Cellular IF

WiFi IF

NEAT
API

NEAT
Stack

U
DP

 T
ra

ns
po

rt

IP

CIB

Po
lic

y
M

an
ag

er

Mobile
CIB SRC

Private WiFi
 CIB SRC

Provider
Network

Provider
Network

Private WiFi
AP

Public WiFi
AP

INTERNET

Public WiFi
 CIB SRC

Cellular PvD Signalling

WiFi PvD Signalling

Figure 4: Example topology for the Cisco use case, showing multiple interfaces and their relation to the
NEAT System. The set of available interfaces depends on the location within a deployment scenario.

to become aware of network characteristics. Once discovered, these characteristics can be used to

influence or constrain selection decisions.

Multiple Provisioning Domains (MPvD) may be simultaneously supported on a single link creating

a selection requirement for applications running on the host. This requires each application to be-

come aware of each new function enabled and to date this has been difficult to deploy using existing

protocol stacks. However, the approach taken in the NEAT System offers a significant change to over-

come this barrier. In the NEAT Architecture, selection between multiple source addresses and inter-

faces can be performed by the stack on behalf of an application by evaluating requirements and pref-

erences specified by the application. NEAT makes it practical for an application running in a MPvD

environment to make the best use of the available source addresses, without each application needing

to be updated with each new network function.

The test cases run one of two NEAT based applications to simulate workloads—either the NEAT-

streamer multimedia test tool1 or a HTTP test workload tool are used to evaluate how an application

can select network interfaces based on properties. NEAT-streamer will attempt to establish an inter-

active video workload connection to a remote peer, reporting obtained throughput and latency.

Four workloads are used to evaluate how a NEAT-based application can select network interfaces

based on properties. The user attempts to utilise all of the workloads, but success is constrained by

the network capabilities available at each of the locations.

2.2.1 Test topology

The test topology (Figure 4) allows to evaluate a NEAT-enabled client connecting to different access

networks with different configurations advertised on different interfaces.

A client uses the NEAT system (the left-most part of Figure 3). This has been updated to integrate

PvD processing. PvD Router Advertisement (RA) messages were processed to access the signalling

about each PvD and allowing this information to be used by the NEAT PM. The central part of the

diagram represents the provider network(s), responsible for generating the RA PvD messages that ad-

vertise the capabilities of the provided networks.

The web server/remote host and remainder of the “Internet” is provided by the UoA testbed (the

right-most part of Figure 3). Note although a web server, DNS server, routers etc. form a part of the

testbed it was not necessary for these to implement NEAT to evaluate this use-case, since PvD is a

1See Deliverable D4.1 [12] for a more detailed presentation of NEAT-streamer.

16 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Table 9: Components of Cisco’s use case testing environment.

Component Description

Application 1 The NEAT-streamer application (see [12]) has been written to evaluate mul-
timedia workloads with this use case. The application should be able to take
advantage of information signalled to the host about network configuration.

Application 2 A NEAT HTTP Client tool was used as the application to evaluate web style
workloads. The application should be able to take advantage of information
signalled to the host about network configuration.

Network The network environment must be able to simulate several profiles of net-
work configurations that have different network properties signalled. Both
lab and live network environments are suitable places to evaluate the use of
NEAT. The UoA Internet Testbed and the Cisco Virtual Testlab were used.

client-side feature. Multiple networks may be available to the NEAT System at any time. In NEAT,

the decision about which interface to use is made at the time when a NEAT connection is setup. A

PvD-enabled NEAT System can therefore take advantage of the signalled information to help inform

network selection choices.

Evaluation testbeds The NEAT stack was run in the UoA Internet testbed and in a Virtual Machine

based Cisco Virtual Testlab. Both were configured to emulate a set of different network environments

simultaneously available, with configuration advertised over PvD.

The UoA Internet testbed for these use cases consisted of Raspberry Pi Single Board computers

connected together via Ethernet using Multiple Provisioning Domains to support multi IPv6 source

prefixes on a single network interface. The Raspberry Pi boards both ran a kernel that was updated to

implement the PvD RA Option [35]. Use of the option could be enabled or disabled, depending on the

test.

The client executes on a Raspberry Pi platform and uses a NEAT system updated to support PvD

information. This includes adding a PvD daemon to accept RA messages from the provider network(s)

and store this information within the NEAT CIB. Another Raspberry Pi is used in the provider network

as the source of the PvD information. This generates PvD information for the RA messages and the

same developed software could in the future be incorporated in the standard software of a provider

router. When the provider router is not directly attached to the client, a proxy may be needed to relay

the PvD information in the RA messages. This function was tested using a third Raspberry Pi placed

between the NEAT client and the source of PvD information.

Cisco’s Virtual Testlab2 is a virtual machine image which uses network name spaces to implement

the network test topology. Network name spaces give applications a per process view of a network

configuration. This allows a single user account to launch processes in different network namespaces

and for the applications to experience this as if they were running on machines with completely dif-

ferent configurations. The Cisco Virtual Testlab allowed development and evaluation to occur on a

single machine instance.

Test environment The UoA Internet testbed provided a testing environment for this use case. This

environment includes three main components listed in Table 9.

2https://github.com/IPv6-mPvD/pvd-dev

17 of 77 Project no. 644334

https://github.com/IPv6-mPvD/pvd-dev

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

To understand how an application using the NEAT System can utilise PvD information we examine

how a set of workloads each with specific requirements is used in four example locations. This is

explored by considering the same set of locations in there different deployment scenarios:

1. Deployment Scenario 1: Single network interface. At each location, there is only one network

interface available. PvD has not been enabled.

2. Deployment Scenario 2: Multiple network interfaces. At each location, two alternative network

interfaces are available. PvD has not been enabled.

3. Deployment Scenario 3: Multiple networks and PvD enabled. At each location, two alternative

network interfaces are available and PvD information is provided by each network.

Deployment scenario 3 can also be used to enable additional domains to be offered in PvD-enabled

locations. The additional PvDs could, for instance, advertise various forms of “walled garden”, such as

a provisioning domain associated with the ISP’s paid TV service that can be used to connect a set top

box to an IPTV solution, or a local private network used to interconnect IoT devices for which there is

no desired Internet connectivity, e.g., a house webcam. This is represented by the IoT workload in this

use case.

Application workload Four application workloads are used to evaluate this use case, based on a sin-

gle multimedia application and three different workloads using Application 2 (a NEAT HTTP Client).

1. Audio Conference:. NEAT-streamer is used to evaluate an audio conference workload, repre-

senting a conference call using a corporate network.

2. Download: An HTTP workload is used to download a large piece of multimedia content for later

viewing.

3. Web Browser: A sequence of HTTP GET requests are made to browse web content via the Inter-

net.

4. IoT: A sequence of RESTful web requests are made by an IoT application to update the applica-

tion and exchange application data with a private web server. This server may be accessed from

home ISPs, but using PvD’s other providers (such as public access networks) may also enable this

additional service.

Table 10: Application workloads.

1 2 3 4

Description Audio conference
(Call to work)

Download (Down-
load of a movie)

Web browser (View
web content)

IoT (Update IoT ap-
plication)

JSON request Medium capacity High capacity Free cost

Low latency Low cost

Legend: Preferred Mandatory

Each application will signal preferences or requirements over capacity, latency and cost:

1. The capacity is the rate that can be sustained on a link, in megabits per second (Mbit/s).

18 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

2. The latency is the delay on a section of the link, in milliseconds (ms).

3. The cost is expressed in pence per megabyte (p/Mbyte).

NEAT will use the PvD information to match these requirements when performing interface selec-

tion. Table 10 shows the four applications we are going to look at in these scenarios and the require-

ments they will signal. Some of the parameters are optional.

Example usage scenarios To illustrate how the networks available at each location are used, we con-

sider the workloads generated as a part of a typical employee’s day, as the employee changes her lo-

cation. Our typical employee uses a NEAT system that seeks to complete each of the four application

workloads as soon as possible. The employee’s workloads attempt to utilise the networks available at

each of the four locations encountered over the course of a day.

1. At the start of the day, the employee goes to collect coffee at her local coffee shop. While drinking

coffee, she decides to connect to the network to start her day’s activities.

2. The employee sees the need to move to the office to conduct an audio conference call with the

boss (limited only to the company network). This company network was not enabled to support

the IoT device update, nor was it a suitable location for private web browsing.

3. At the end of the day, the employee calls-in for another drink at the coffee shop located in the

foyer of the company. This coffee shop has access to some company networks as well as the

general Internet.

4. Finally, having consumed her coffee, the employee heads home, where she is presented with yet

another set of networks to choose from.

The full set of four scenarios was run through with three network configurations: a single network

with no PvD, multiple networks with no PvD and multiple networks with PvD.

The NEAT System is able to choose between the offered networks using the provided PvD infor-

mation. The NEAT System is expected to choose the appropriate available network to best satisfy the

properties expressed by the four applications.

Tables 11,12 and 13 show each of the four applications and the expected result as our User pro-

gresses through the four locations. There are three possible results for each attempt to connect: suc-

cess (green), fail (i.e., marginal progress on the connection, but unable to complete) (red) and not

attempted (cyan). Each application continues to try to connect in each scenario until it succeeds,

once it has succeeded it does not need to be tried again.

Table 11 shows the four application workloads being attempted when one network is available. In

this case, a single WiFi interface is available with no PvD signalling. All four applications are attempted

at the same time in each case. The limited capacity on the Free WiFi in the coffee shop is unable to

handle the traffic generated by all of the applications. These public networks are only configured for

public access, and do not support the IoT service.

Table 12 shows how the application workloads attempt to connect when there are multiple network

interfaces. In this case, the workload first attempts to connect via WiFi and, if unsuccessful, attempts

to use the mobile interface. PvD signalling has not been enabled and each network can provide only

one service, and hence only the home ISP supports the IoT service.

19 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Table 11: Deployment Scenario 1: Expected completion of application workloads with a single net-
work interface (PvD has not been enabled).

Coffee Shop Work Work Coffee Shop Home

Audio Conference WiFi Fail Success Not Attempted Not Attempted

Web Browser WiFi Fail Success Not Attempted Not Attempted

Download WiFi Fail Not Attempted Fail Success

IoT WiFi Fail Fail Fail Success

Table 12: Deployment Scenario 2: Expected completion of application workloads with multiple net-
work interfaces (PvD has not been enabled).

Coffee Shop Work Work Coffee Shop Home

Audio Conference WiFi Fail Success Not Attempted Not Attempted

Mobile Fail Fail Fail Fail

Web Browser WiFi Fail Success Not Attempted Not Attempted

Mobile Fail Not Attempted Not Attempted Not Attempted

Download WiFi Fail Not Attempted Fail Success

Mobile Fail Fail Fail Fail

IoT WiFi Fail Fail Fail Success

Mobile Fail Fail Fail Fail

20 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Table 13 shows the attempts to connect when there are multiple network interfaces and there is

PvD signalling information available on both the links. With PvD enabled the NEAT Stack is able to

stop applications running when their requirements cannot be met (e.g., the Download is not run on

the free Coffee Shop WiFi because it advertises less capacity than the application needs). Enabling

PvD is expected to significantly reduce the number of attempts that will end in failure.

Table 13: Deployment Scenario 3: Expected completion of application workloads with multiple net-
work interfaces and PvD Enabled.

Coffee Shop Work Work Coffee Shop Home

Audio Conference WiFi Not Attempted Success Not Attempted Not Attempted

Mobile Not Attempted Not Attempted Not Attempted Not Attempted

Web Browser WiFi Success Not Attempted Not Attempted Not Attempted

Mobile Not Attempted Not Attempted Not Attempted Not Attempted

Download WiFi Not Attempted Not Attempted Not Attempted Success

Mobile Not Attempted Not Attempted Not Attempted Not Attempted

IoT WiFi Not Attempted Not Attempted Not Attempted Not Attempted

Mobile Success Not Attempted Not Attempted Not Attempted

2.2.2 Test implementation

PvD in NEAT PvD support was integrated into the NEAT System by updating the NEAT Policy Man-

ager to enable collection of the PvD information over HTTP and JSON, signalled using IPv6 Router

Advertisements (RA). It also includes support to allow an application to use policies that can be based

on the collected PvD information. Together this made it possible for an application to request a wide

range of network characteristics (e.g., to use only networks that have no cost and to specify the net-

work must be able to support specific features, such as low latency or support for a particular type of

device).

The PvD information enters the NEAT Policy Manager and is stored as a Characteristic Information

Base (CIB) source. A stand-alone interface was used that processes the PvD information received in

RA messages and extracts the URL to contact the PvD server. From this interface PvD information can

be retrieved in JSON format. The CIB source translates and deposits the JSON PvD information in the

CIB, where it can then be utilised by the Policy Manager to make decisions. The Policy Manager also

contains the appropriate machinery to ensure that expired information is removed from the CIB (i.e.,

control the way the information is cached).

An application can set properties to be used by the NEAT Policy Manager to match configured poli-

cies. When PvD is supported, a policy can depend upon the information about a PvD. For example,

an application could request a mandatory property via the NEAT API, requiring that only prefixes with

a PvD advertising this property would be selected — e.g., the company network could be required for

a “conference application”. Whereas, when an application requests optional properties, NEAT would

select the PvD based on a score system of how well each of the PvD interfaces satisfies the set of proper-

ties requested by the application. The result of the Policy Manager informs the selection components

of the NEAT System and results in traffic being sent using the appropriate NEAT interface.

21 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

NEAT application platforms NEAT was evaluated on top of virtual infrastructure in Cisco’s PvD test-

lab and was also evaluated on Raspberry Pi single board computers to evaluate the setup in a non-

virtual environment.

Raspberry Pi single board computers were imaged with patched kernels to allow support for the

PvD Router Advertisement Option. These tests were conducted on real hardware to get implementa-

tion experience in a real world network environment.

In both cases, NEAT applications were integrated with pvdd, a Provisioning Domains daemon that

parses and handles Router Advertisements, developed by Cisco and released as open source3. The

NEAT PM interacted with pvdd using the HTTP JSON API. This API demonstrated how PvD can be

enabled for hosts which do not yet support the PvD RA option.

In each of the planned tests the NEAT stack was evaluated to validate the testbed and test topology.

Validation ensured that the Characteristic Information Base was collecting information from pvdd

and that the information was correct for the planned test.

Network configuration automation Tests were automated with a script in which the test topology

was established and the set of test cases were run. The script was configured to run for each applica-

tion in each deployment scenario and performed the following tasks:

• Configure network topology.

• Configure network characteristics.

• Configure pvdd to advertise characteristics.

• Launch PvD HTTP proxy.

• Launch an “other end” for the NEAT application to talk to.

• Run a NEAT application with JSON policy file.

To handle PvD RA processing in a single place, a host may run a daemon to process these messages

and provide access to the signalled information. The pvdd daemon is used in this set of use cases.

pvdd offers bindings to multiple languages, these use cases execute a nodejs application which proxies

the PvD JSON over HTTPS.

2.2.3 Results

Validating that PvD information was being parsed and incorporated into the NEAT CIB was required to

verify that the test environments were functioning. Listing 1 is an example of a CIB source generated

from PvD signalled information.

Correct PvD properties appear in the NEAT CIB as device interface entries for the source address

prefixed with the pvd_ string to indicate that they have been signalled from the network. Once CIB en-

tries have been picked up from the network they are then evaluated as if there are enhanced interface

property sets.

{

"description": "PvD CIB node for remote host 139.133.204.40",

"expire": -1.0,

3https://github.com/IPv6-mPvD

22 of 77 Project no. 644334

https://github.com/IPv6-mPvD

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

"filename": "pvd_corporate_ext.erg.abdn.ac.uk.cib",

"link": false,

"priority": 0,

"properties": [

[

{

"interface": {

"precedence": 2,

"value": "wlan0"

},

"local_interface": {

"precedence": 2,

"value": true

}

}

],

[

{

"capacity": {

"precedence": 2,

"value": 100000000

},

"cost": {

"precedence": 2,

"value": 100

},

"domain_name": {

"precedence": 2,

"value": [

"pvd.erg.abdn.ac.uk",

"*"

]

},

"ip_version": {

"precedence": 2,

"value": 6

},

"latency": {

"precedence": 2,

"value": 10

},

"local_ip": {

"precedence": 2,

"value": "2001:2::2"

},

23 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

"transport": {

"precedence": 2,

"value": "TCP"

}

}

]

],

"root": true,

"uid": "pvd_corporate_ext.erg.abdn.ac.uk"

}

Listing 1: Generated CIB entry for a Corporate PvD from the UoA Testbed. This generated

entry includes metadata for cost and capacity signalled from the network via PvD (shown in bold

characters).

Scenario test results The tests considered the three deployment scenarios across each of the four lo-

cations using the set of application workloads. In each plot, a green box shows a successful connection

and communication of the workload. A red box represents an application workload that failed (i.e., it

connected to the server and started sending traffic, but did not complete the required workload). A

white box shows a case that was not attempted (i.e., where PvD information avoided an attempt to

connect and start a transfer that would not succeed).

The first deployment scenario has a single non-PvD enabled network interface. This provides a

base line. The plot in Figure 5 shows application workload progress for each location.

The four applications attempt to run concurrently, even in locations where they have little or no

chance of completion. Their attempts to connect can therefore interfere with each other, impeding

each other’s progress — and in some cases resulting in failure of connections that could have been suc-

cessful, had they not been attempted in parallel. As an example, the download application workload

creates a large volume of traffic when run on a network with limited capacity and prevents progress

with any other concurrent application workload. A deployment scenario that presents multiple pos-

sible network interfaces compounds this interference between the different workloads. The burden

of changing the network interface is shown by the long dependency chains through many networks

while an application workload attempts continue to fail.

Figure 6 shows the effect of application workloads that attempt in turn to connect using the WiFi

and 4G interfaces, while continuing to generate network traffic on networks that cannot pass this traf-

fic.

Finally, the third deployment scenario shows the effect of using multiple networks that provide

network signalling via PvD. This shows how this can enable the NEAT stack to make better selection

decisions. With enough information the NEAT stack is able to not attempt connections on networks

which are unable to fulfill application requirements.

In contrast to the previously presented deployment scenarios, Figure 7 shows that the use of PvD

information effectively eliminates the impact of unproductive connection requests and avoids unpro-

ductive competing traffic from impacting the completion time of other application workloads. The

result is faster completion of the set of application workloads.

Comparing the dependency plots for the three network configurations it becomes clear that in-

corporating PvD network signalling has benefits. Applications are able to complete much earlier in

24 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Coffee Shop Work Work Coffee Home

Audio Conference

Download

Web Browser

IoT

Figure 5: Dependency plot showing completion of the NEAT application workloads in each of the four
locations for a deployment scenario with only a single network interface (PvD not enabled).

25 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Coffee Shop Work Work Coffee Home

Audio Conference

Web Browser

Download

IoT

Figure 6: Dependency plot showing success of using each application in each of the four locations
(PVD was not enabled). At each location the wifi and mobile network interfaces are shown respectively
as the first and second columns under each of the locations.

26 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Coffee Shop Work Work Coffee Home

Audio Conference

Download

Web Browser

IoT

Figure 7: Dependency plot showing progress of the application workloads in each of the four locations
for a deployment scenario with two network interfaces (PvD enabled).

27 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

the location when interference traffic is reduced. Failed attempts can be reduced or even removed

on networks that cannot support the properties required by the application reducing the number of

spurious bytes sent on the network. The Policy Manager HTTP interface allowed PvD support to be

added without having to modify any NEAT based applications. The extensibility of the NEAT Architec-

ture made it possible to integrate one signalling method, further methods could be trivially integrated

through the same API.

2.2.4 Key findings and implications

This use case has explored the use of network layer signalling as a part of the interface/transport se-

lection process in NEAT. Choosing an appropriate network interface to send data can have a very sig-

nificant impact on the quality of experience for some applications (e.g., multimedia applications that

desire a specific QoS).

The scenario added signalling between the network provider and the application stack to enable a

more flexible choice of links/services. This can avoid needless probing/starting of network flows that

are unable to sustain the required network service (e.g., have insufficient or no capacity to the required

endpoint, would result in excessive cost, or are unable to meet the latency requirements of a specific

application).

Implementation provided insight into the ways that network-layer signalling could be integrated in

a NEAT System. In particular, the NEAT Architecture offers a coherent approach to handling network

signals that enables caching of information (e.g., in the NEAT CIB), consistent logging and reporting of

information (providing visibility of the input and outcomes of the policy framework), and the ability

to manage how the information is used (based on policies provided by the system and/or applica-

tions) and validated (e.g., it is often important to not accept arbitrary inputs that can make a system

vulnerable to Denial-of-Service attacks).

The use case utilised the new network-layer PvD mechanism to feed the NEAT Policy Manager

with information about connected networks. The PvD mechanism was successfully integrated into

the NEAT System. The components (e.g., pvdd) were demonstrated on multiple hardware platforms,

although these tests only utilised components operating on the Pi platform. Furthermore, the devel-

oped software components were used in the UoA Internet Testbed to construct a demonstrator for the

Cisco multimedia use case for NEAT. This provides a concrete example of how the PvD mechanism

can be used within actual protocol stacks.

The structure of PvD information is extensible, and therefore once PvD signalling support is in-

tegrated, new policies could be developed that leverage any additional information provided. Since

this information enters the CIB, any application may take advantage of the information learned about

the network. Research into a range of other information types can thus build upon this work— for

instance, signalling of the available DSCP mappings (to avoid inappropriately using a code point that

is not locally supported), or the ability to utilise information about latency of the offered service (to

help choose the appropriate interface for time-critical services).

The approach to integrate and cache PvD information in the CIB can also be used to collect and

manage other information about the network path, enabling this to be used by transport protocols or

selection mechanisms. For example, a transport system could provide a module that probes for and

collects information about the maximum packet size that is supported by a path (i.e., Path MTU Dis-

covery [18]). To do this requires integration of many different signals (probe success, ICMP messages,

28 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

interface parameters and information from explicit signalling). Like PvD information, the inputs need

to be validated, decisions logged, and outcomes presented to the application in a consistent fashion.

The code components developed to support this use case within the NEAT Project continue to

be used to promote and develop the specifications for PvD within the IETF INTAREA working group.

While this standardisation work is directly applicable to the policy-based approach of NEAT, it can also

be used with other systems that can utilise the information about the attached networks. The appli-

cability therefore extends beyond the NEAT Project and is expected to become part of new products

developed.

2.3 Mozilla use case

The Mozilla Firefox web browser is a sophisticated legacy application and runs on many hardware

platforms. It natively implements many of the mechanisms offered by the NEAT library. Happy-

Eyeballing between IPv4 and IPv6 and between different application layer protocols are just some

of the overlap in functionality. Firefox using the NEAT library is a good feedback input for the NEAT

System and Policy Manager as a whole, and serves also as an evaluation of the NEAT library and the

NEAT API and their ability to support involved and complex applications such as Firefox.

The main expected result is to prove that a complex application, such as Firefox, can make use of

NEAT’s Happy-Eyeballs mechanisms and detect what network and transport protocols are supported

along the path and available on the remote host (server). Such an existence proof gives credence to

NEAT’s ambition of enabling other applications to evolve the overall ecosystem through the introduc-

tion of new protocols and transports.

While doing this run-time detection the application performance, typically measured by page load

times, should not be meaningfully degraded — Firefox is already a well-tuned application and an im-

proved performance is not expected from NEAT per se. The aspect of page load being considered in

these tests is connection setup overhead. Selection of different transport protocols would necessarily

drive page load performance with their particular characteristics (e.g., multipath, or LEDBAT) after

connection.

2.3.1 Test topology

The base topology used for experiments is shown in Figure 8. The three key components of this setup

are described in Table 14.

Table 14: Components of Mozilla’s use case testing environment.

Component Description

Application In this case the application is a Firefox distribution that uses the NEAT library
(see Deliverable D4.1 [12]) on a host with an active Policy Manager.

Server The web server must be able to serve content using IPv4 and IPv6. This will
test the NEAT library’s Happy-Eyeballs mechanism and additional compo-
nents, such as the PM.

Network It should be possible to control the test network and block certain protocols
or add packet loss. For example, a scenario could include both a client and
a server that support IPv6 and IPv4 protocols but the path is misconfigured
and only allows IPv4 packets through.

29 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Client
running NEAT-
enabled Firefox

http serverNetwork

Figure 8: Base test topology for the Mozilla use case.

2.3.2 Test implementation

The experiments demonstrate how Firefox uses the NEAT System for IP version and transport protocol

selection in order to favor more modern versions of each protocol. The NEAT port of Firefox disables

its own native happy eyeballs support in favor of the NEAT connection management. Firefox uses

NEAT to select the best protocol suite for use on the given network considering the capabilities of

both the client and the server. This test will illustrate that an Internet application can rely on the NEAT

System to select the best available protocol given the policies and circumstances it operates under.

The NEAT port of Firefox is using NEAT with preference to pick IPv6 over IPv4 and requests the use

of SCTP if it is available.

The testing includes the scenarios listed in Table 15. Test 1 focuses on IP protocol selection, whereas

Test 2 focuses on enabling use of SCTP transport on the client side. Test 2 also includes a test under

lossy network conditions to validate the impact of happy eyeballs in the presence of lost packets.

The test network was the open Internet and the devices under test were separated, on average, by

50 ms of latency as measured by ICMP. Packet dropping for broken IPv6 emulation was implemented

with Linux firewall rules where necessary on the client side.

The happy eyeballs configuration via the policy manager was written to give a 10 ms response

advantage to SCTP (see Listing 2).

{

"policy_type": "profile",

[...]

"properties":{

"__he_delay": {

"value": 10,

"precedence": 1,

"score": 0,

"description": "special property defining HE delay in

milliseconds"

},

[..]

}

}

Listing 2: Policy Manager Happy Eyeballs Profile.

2.3.3 Results

The timings recorded in Test 1 were obtained from a libpcap packet capture made with tcpdump and

analyzed with Wireshark.

30 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Table 15: Experiments for Mozilla’s use case testing.

Test ID Summary

1a The server supports both IPv4 and IPv6, but the network blocks IPv6

1b The network supports both IPv4 and IPv6, but the server supports only IPv4

1c Both the server and the network support IPv4 and IPv6

2 The server does not have SCTP available but the client should actively determine that
under both normal and high loss conditions

Test 1a This test used an IPv6 capable server and a domain name that resolved to both v4 and v6 as

well as a client that was enabled for both protocol versions. However, the network was configured to

drop IPv6 TCP via a firewall rule.

Table 16: Test 1a — timeline of connection events at the client.

Timestamp (ms) Event

0 Firefox, via NEAT, made DNS A and AAAA queries for server

42 Received the A record response

43 Received the AAAA response

58 TCP connection initiated to the IPv6 address

58 TCP connection initiated to the IPv4 address

103 IPv4 SYN-ACK. No further v6 packets were seen in the trace.

Repeating test 1a with the native Firefox created essentially the same result with the SYN-ACK being

received at T=100ms.

Test 1b This test used an IPv6 capable server and a domain name that resolved to both v4 and v6,

however, the server was only operating on the IPv4 address.

Table 17: Test 1b — timeline of connection events at the client.

Timestamp (ms) Event

0 Firefox, via NEAT, made DNS A and AAAA queries for server

36 Receive the AAAA record response

36 Receive the A response

54 TCP connection initiated to the IPv4 address

55 TCP connection initiated to the IPv6 address

105 ICMPv6 Port Unreachable

106 IPv4 SYN-ACK. No further v6 packets were seen in the trace.

31 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Repeating test 1b with the native Firefox created essentially the same result with the SYN-ACK be-

ing received at T=108ms.

Test 1c This test fully enabled IPv4 and IPv6 on both client and server.

Table 18: Test 1c — timeline of connection events at the client.

Timestamp (ms) Event

0 Firefox, via NEAT, made DNS A and AAAA queries for server

41 Receive the AAAA record response

43 Receive the A response

61 TCP connection initiated to the IPv4 address

61 TCP connection initiated to the IPv6 address

98 IPv6 SYN-ACK Received

103 IPv4 SYN-ACK Received

110 IPv4 TCP FIN Transmitted. No further v4 seen in trace.

Repeating this test with the native Firefox created essentially the same result with the governing

connection being completed at time T=105ms.

Test 2 This test utilized an SCTP and TCP enabled NEAT-port of Firefox that initiated communication

with a server that was TCP only. The test used only IPv4 but was configured to give a preference to

SCTP via the NEAT policy manager (Listing 3). This setup emulates the rollout period of a new protocol

where applications will want to offer advanced functionality but need to be prepared to seamlessly

fallback to traditional modes of operation.

This test was repeated 20 times in the baseline configuration. The test was then modified and rerun

an additional 20 iterations with 10% packet loss being added to the network.

Test 2 measurements could be taken using the NEAT library logging and timestamp facilities in-

stead of relying on the more laborious pcap and wireshark approach of Test 1. This is possible for this

test because native Firefox, which obviously does not have NEAT logging, also has no SCTP function-

ality so cannot be used as a control for this test. Several of the NEAT log samples were tested against

the PCAP data to confirm consistency.

{

"uid":"reliable_transports",

"description":"reliable transport protocols profile",

"policy_type": "profile",

"priority": 2,

"replace_matched": true,

"match":{

"transport": {"value": "reliable"}

},

"properties":[

32 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

[{"transport": { "value": "SCTP", "precedence": 0, "score": 0}},

{"transport": { "value": "TCP", "precedence": 2, "score": 2}}

]

]

}

Listing 3: SCTP Favoring Profile.

A raw sample of NEAT library logging from one iteration is included in Listing 4. Note the pref-

erence for SCTP both in the candidate order and in the connection results at times 0.181953 and

0.191022.

[0.000448][DBG] neat_set_property

[0.000453][DBG] neat_set_property - { "transport": {

"value": ["SCTP","TCP"], "precedence": 1 }}

[...]

[0.001856][INF] Available src-addresses:

[0.001862][INF] IPv6: 2604:6000:1513:4726:329f:40a8:a4f0:c325/64

pref 604308 valid 604308

[0.001868][INF] IPv6: 2604:6000:1513:4726:6534:3ba8:652:646e/64

pref 0 valid 441040

[0.001873][INF] IPv6: 2604:6000:1513:4726:e8d3:d851:8cb3:7758/64

pref 8996 valid 527417

[0.001878][INF] IPv6: ::1/128 pref 4294967295 valid 4294967295

[0.001883][INF] IPv4: 192.168.16.138/24

[0.001887][INF] IPv4: 127.0.0.1/8

[...]

[0.110229][DBG] on_pm_reply_post_resolve

[0.110330][DBG] Reply from PM was: [

{

"__he_delay": {

"evaluated": false,

"precedence": 1,

"score": 0,

"value": 10

},

"domain_name": {

"evaluated": false,

"precedence": 2,

"score": 0.0,

"value": "linode64.ducksong.com"

},

"transport": {

"evaluated": false,

33 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

"precedence": 1,

"score": 0.0,

"value": "SCTP"

}

},

[...]

[0.110399][DBG] HE Candidate 0: lo [1] SCTP/IPv4 <saddr 127.0.0

.1>

<dstaddr 192.155.95.102> port 80 priority 0

[0.110404][DBG] HE Candidate 1: lo [1] TCP/IPv4 <saddr 127.0.0

.1>

<dstaddr 192.155.95.102> port 80 priority 1

[0.110409][DBG] HE Candidate 2: eno1 [2] SCTP/IPv4 <saddr 192.168

.16.138>

<dstaddr 192.155.95.102> port 80 priority 2

[0.110414][DBG] HE Candidate 3: eno1 [2] TCP/IPv4 <saddr 192.168

.16.138>

<dstaddr 192.155.95.102> port 80 priority 3

[...]

[0.129643][INF] nt_connect: Bind fd 38 to 192.168.16.138

[0.129665][DBG] SCTP stream negotiation - offering : 123 in / 123 out

[...]

[0.139633][INF] nt_connect: Bind fd 43 to 192.168.16.138

[0.139672][DBG] on_he_connect_req: Connect successful for fd 43, ret = 0

[...]

[0.181936][DBG] HE Candidate connected: eno1 [2] SCTP/IPv4 <saddr

192.168.16.138>

<dstaddr 192.155.95.102> port 80 priority 2

[0.181953][DBG] he_connected_cb - Connection status: 111 - Connection

refused

[...]

[0.191022][DBG] HE Candidate connected: eno1 [2] TCP/IPv4 <saddr

192.168.16.138>

<dstaddr 192.155.95.102> port 80 priority 3

[0.191032][DBG] he_connected_cb - Connection status: 0 - Success

[0.191037][DBG] First successful connect (flow->hefirstConnect)

[0.191043][DBG] send_result_connection_attempt_to_pm

Listing 4: Sample from a NEAT log.

A representative sample of a Test 2 iteration is included in Table 19 in order to illustrate the whole

lifecycle of a connection.

34 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Table 19: Test 2 — timeline of baseline connection events at the client.

Timestamp (ms) Event

0 Firefox, via NEAT, made DNS A and AAAA queries for linode.ducksong.com

(a host which only a A entry)

46 Receive the A response

58 SCTP session initiated

68 TCP connection initiated

108 SCTP session received an SCTP abort

123 IPv4 SYN-ACK Received

This result does meet the expectation of enabling seamless backwards TCP compatibility while

giving the evolving SCTP protocol a negotiation advantage.

Test 2 repeatability The Test 2 scenario was repeated 20 times to assess the variabiltiy of the results

and the appropriateness of the 10 ms advantage. The results (see Figure 9) contained low variation and

in each case the SCTP abort was received prior to the TCP SYN-ACK. The dots on the plot represent

the deterministic completion of the handshake regardless of whether it completed (i.e., TCP SYN-ACK

received) or was aborted (i.e., SCTP ABORT received).

Figure 9: Happy Eyeballs with 0% Packet Loss

Finally, the same test was repeated using a lossy network. 10% packet loss was added to the network

via a Linux firewall rule (Listing 5).

tc qdisc add dev eno1 root netem loss 10

Listing 5: Packet Loss Configuration.

The results of this test (see Figure 10) are consistent with the lossy configuration and the previous

results. The baseline configuration results in all SCTP connection attempts being rejected which in

turn requires a TCP connection for the test to complete. Because of that, TCP packet losses are repre-

sented on the graph as very large numbers, due to the Linux TCP kernel’s 1-second SYN loss recovery

algorithm. However, SCTP losses result in gaps on the graph as those connections are never deter-

ministically resolved. The SCTP connections do not complete because the successful TCP connection

35 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Figure 10: Happy Eyeballs with 10% Packet Loss

completes before the SCTP loss retry machinery finishes and the SCTP work is then abandoned as

superfluous.

2.3.4 Key findings and implications

The key finding of this test is that NEAT Happy Eyeballs (HE) strategies are competitive with bespoke

native HE implementations like those of Firefox. Due to the depth of the NEAT transport library and

breadth of policy manager options Firefox was able to create SCTP association attempts to the web

server without meaningfully penalizing its legacy TCP support in the tests described here. In this case

TCP was used, due to lack of deployment of SCTP on the server, but SCTP was enabled as a path for

evolution at minimal cost.

Utilising this functionality in a standard transport layer API promises to bring the protocol evolu-

tion that Happy Eyeballs enables to a wider range of applications through ease of use.

Mozilla has a particular interest in enabling QUIC and other UDP based protocols to thrive on the

Internet. Doing so will require an ecosystem that supports HE techniques as workarounds for the long

tail of firewalls and long forgotten configurations that can impair such deployment.

The tests described here are a reasonable proxy for evaluating mechanisms for widely deploying

QUIC and other future transport innovations.

2.4 EMC use case

The EMC use case evaluates a datacentre scenario in which a logically centralised network controller is

aware of application requirements and network conditions. The use case leverages the transport opti-

misations provided by the NEAT System interacting with an SDN controller/orchestrator that manages

the datacentre network.

The primary goal of this use case was to improve the performance for large data transfers (so-

called elephant flows) within a datacentre, using the NEAT System augmented by the knowledge of

the underlying network with a minimal impact on the applications running over it. The optimisation

aims to improve the performance of individual end-host applications as well as the overall network

performance in terms of flow completion times (FCT). The goal was to exploit path diversity using

MPTCP, in cases where this may have a positive impact on the FCT.

A second aspect evaluated in the context of large file transfers is the use of deadline-aware less-

than-best-effort (DA-LBE) congestion control mechanisms that were designed as part of WP3. Here,

a data replication scenario comprised of a client connected to a datacentre over a wide area network

36 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Application
requirements

Po
lic

ie
s

&
N

e
tw

o
rk

 i
n
fo

rm
a
ti

o
n

NEAT-enabled
client

SDN Controller
(OpenDaylight)

NEAT NBI

NEAT-enabled
serverMultipath datacenter network

cross traffic

NEAT client traffic

Figure 11: datacentre topology for the EMC use case (SDN experiments).

Backup test
server

DA-LBE enabled
senderE

M
C

 I
N

FI
N

IT
E
 t

e
st

b
e
d

S
im

u
la

 l
a
b

Internet

Wide area path

cross traffic

DA-LBE traffic

Figure 12: WAN topology for the EMC use case (DA-LBE experiments).

(WAN) was considered. The test demonstrated file transfers targeting a predefined completion time

without adversely impacting concurrent network traffic.

2.4.1 Test topology

Figures 11 and 12 provide a high-level view of the two topologies which serve as the basis of the exper-

iments, as defined in the test plan in deliverable D4.2 [11]. The components are described in Table 20.

The topology in Figure 11 was used to evaluate an SDN datacentre scenario. The topology depicted in

Figure 12 was used to evaluate a WAN cloud provider scenario using DA-LBE.

2.4.2 Test implementation

Several tests were constructed to demonstrate that an integration between NEAT and a SDN controlled

network leads to improvements for both the application and the network, on the one hand, and the

benefits brought by the use of DA-LBE, on the other hand. Table 21 summarizes the experiments de-

fined in Deliverable D4.2 [11]. In the SDN experiments congestion was induced by replaying realistic

cross-traffic generated using existing traffic generator tools [1, 40].

37 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Table 20: Components of EMC’s use case testing environment.

Component Description

NEAT-enabled
application

A client/server data synchronization application for transmitting large files
across the network. A NEAT-enabled port of Rsync (neat-rsync) was se-
lected as a representative open-source application. Denoted NEAT-enabled
client/server in Figure 11.

Traffic generator The traffic generators D-ITG and DCT2Gen were used to generate cross traffic
with the desired characteristics.

Multipath datacen-
tre network

SDN-enabled physical or virtualised topology within the EMC INFINITE
testbed, comprised of three disjoint paths between a source and destination
node, hosting the client and server of the application, respectively. The net-
work is managed by a network controller supporting OpenFlow as the south-
bound protocol. The experimental network was used to simulate different
conditions in a managed network, e.g., high/low congestion, high/low la-
tency, heavy/light load.

Wide area path A path traversing the public Internet between the INFINITE testbed and a
node hosted at SRL.

SDN Controller The OpenDaylight open-source SDN controller framework was used to man-
age the datacentre network, monitor its status and interact with the attached
NEAT Systems on the hosts (relying on the work developed in WP3).

Table 21: Experiments for EMC’s use case testing.

Test ID Summary

1a Large file transfer with legacy Rsync in both an empty and a congested network, in order
to determine baseline performance

1b Large file transfer from client to server in both an empty and a congested network with
neat-rsync

2 Large file transfer between a neat-rsync client and server in a datacentre network with
SDN-supported orchestration, and with empty and congested links

3 Transparent handling of elephant flows using controller-assigned differentiated services
code point (DSCP) marking or MPTCP sub-flows mapped to disjoint network paths using
neat-rsync

4a Large DA-LBE file transfer between the DA-LBE enabled sender and the Backup test
server over the WAN with other large TCP Cubic flows sharing the path

4b Large file transfers between the DA-LBE enabled sender and the Backup test server over
the WAN comparing the relative send rates of Cubic based DA-LBE and Vegas based DA-
LBE with TCP Cubic

2.4.3 Results

The expected results for the above sequence of tests as put forward in Deliverable D4.2 can be sum-

marised as: a) reduction of flow completion times, b) fine-grained control of how elephant flows are

handled in datacentre networks, c) improved network utilisation by exploiting path diversity, and d)

WAN file transfers with deadlines and negligible impact on concurrent traffic.

38 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

In the sequel we present our results beginning with an evaluation of data transfers in testbed and

emulated SDN environments (Tests 1a, 1b, 2 and 3 in Table 21), followed by an analysis of the devel-

oped DA-LBA approaches in a wide area network (Tests 4a and 4b).

SDN integration and performance evaluation The SDN scenario considers a typical fat-tree data-

centre topology in which a class of applications generates large flows with data sizes known to the

respective NEAT system. We used the NEAT-enabled version of rsync (see D4.1 [12]) where for each

opened flow the data size in bytes is passed to the NEAT API as a NEAT property flow_size_bytes.

Using this information the aim was to allow the network to minimize the flow completion time for each

individual client as well as to analyze the impact of the centralised approach on the network-wide flow

completion times.

Core

Edge

Aggregation

Figure 13: Fat-tree datacentre topology (K=6).

A key feature of fat-tree topologies is that they are rearrangeably non-blocking, meaning that for

any communication pattern, there exists some set of paths that will saturate all the bandwidth avail-

able to the end hosts in the topology [8]. This implies that multiple paths may exist between any pair

of source and destination nodes. A K-ary fat-tree topology is comprised of three layers: core, aggrega-

tion and edge, where K defines the number of pods in the topology, as well as the associated number of

switches servers and links. A typical fat-tree topology with K = 6 is depicted in Fig. 13. The highlighted

paths illustrate three node-disjoint paths between two end hosts.

Unfortunately, current routing algorithms rely on shortest path based approaches to identify the

path taken by flows, which are not suitable when multiple equal cost paths are available. Allocating

network resources on a per packet basis is problematic as the performance of most transport layer

protocols used today suffers if packet reordering occurs. In addition, standard hash based ECMP ap-

proaches, which aim to distribute traffic across multiple equal cost paths, are also not ideal as hashing

does not take into account the actual utilisation of the individual paths which may result in a map-

ping of competing flows to oversubscribed links. Furthermore, in practice it is not feasible to uti-

lize a centralised controller to continuously rearrange all active end-to-end flows such that no over-

subscription of the capacity occurs. This is due to the management overhead and timing requirements

associated with managing dynamic and short-lived flows.

The motivation behind this work is to demonstrate that NEAT’s SDN integration mechanism can

be used to flexibly enable approaches for managing salient flows in a datacentre network. Specifically,

our aim is to utilize an SDN controller to explicitly allocate the paths for elephant flows on demand,

while handling smaller flows using static forwarding rules. By only processing a limited number of

large flows we expect to minimize the controller load, as well as the number of forwarding entries that

must be stored in the switches.

39 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

14
16

18

14
16

18OpenFlow switch
10G

S8

26 28 30 32

S6

26 28 30 32

OpenFlow switch

10
G

10
G

Cross-traffic

source

Cross-traffic

sink

20

20

2 4 2 4

S3 S5

10
G

10
G

Traffic sender Traffic receiver

PicOS-OVS1 PicOS-OVS2

Cross-traffic

Application

traffic

(TCP/MPTCP)

Figure 14: datacentre lab topology for the EMC use case.

Table 22: Lab setup for EMC use case.

Component Description

Switches Pica8 P-3920, PicOS Version 2.3.7

CPU Intel Xeon E5-2609 @2.40GHz, 2 NUMA nodes

OS Ubuntu 16.04.4 LTS, MPTCP kernel version 4.14.24.mptcp

NIC Intel 82599ES 10-Gigabit

Our SDN experiments are divided in two parts. First we consider a subgraph of the fat-tree network

topology and analyze the flow completion times for a single instance of the file transfer client under

different traffic conditions using physical network infrastructure. Then, in the next section, a large

scale datacentre topology is evaluated using an emulated setup.

The lab setup of the fat-tree subgraph implemented in EMC’s Infinite testbed is depicted in Fig. 14.

Table 22 provides details of the used components. The topology uses 10 Gbps fibre Ethernet links,

where the client node S3 and the server node S5 are connected to SDN switches, using a single 10 Gbps

edge link. Between the two switches, three 10 Gbps paths are configured, such that the flows from

the client can be forwarded across three disjoint network paths (core links). The setup mirrors the

paths highlighted in Figure 13. The forwarding rules on the SDN switches are installed by a controller

running on a separate host. In addition, the servers S8 and S6 are used as a traffic generator source

and sink, respectively, to inject cross traffic into the core links. The traffic generator is used to simulate

different utilisation levels in the core network.

We evaluate the impact of SDN-supported orchestration, where a controller dynamically installs

flowtable entries for each newly arriving TCP flow across all SDN switches in the network. First, we

measure the additional latency introduced by the processing of the initial flow at the controller and

40 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

TCP
2

1

0

1

2

3

4

5

6

C
on

tr
ol

le
r

ad
de

d
de

la
y

[m
s]

Figure 15: Controller impact on latency

subsequent installation of the forwarding rules at the relevant switches. The following set of measure-

ments map to test 2 in Table 21 for uncongested networks. We evaluate the controller induced delay

for a single TCP flow. Figure 15 depicts the absolute increase in the FCT. Unsurprisingly, the mean FCT

increases by approximately 0.6ms compared to a scenario where statically pre-configured forward-

ing entries are used. We note that for small flows such an increase yields a significant increase of the

effective transfer rate.

Next, we consider the performance of the TCP and MPTCP protocols on congested and non con-

gested links. We transfer flow sizes d f ranging from 1 MB to 25GB from the client on S3 to the server

on S5 and measure the FCT t f at S5. From the FCT we calculate the effective transfer rate r f = d f /t f for

each flow size. Each experiment is repeated 100 times.

Cross traffic is generated from node S8 to S6 to achieve a predefined utilisation ρ over each of the

three core paths between the SDN switches. To this end, constant bitrate UDP flows are generated

using the pktgen packet generator on each of the three interfaces in S8, where the utilisation on each

interface is set to ρ ∈ {0,0.25,0.50,0.66,0.75}. On the client S3 we use the ndiffports path manager for

all MPTCP tests, which generates multiple sub-flows over a single interface for each file transfer. We

set the number of sub-flows to 3. We use the cubic congestion control algorithm for TCP flows and the

OLIA congestion control algorithm for MPTCP flows. In this scenario, we expect MPTCP to be able to

exploit the network path diversity, as the controller allocates each sub-flow to a separate, disjoint path

in the network core.

Figure 16 depicts the results (shaded areas represent 95% confidence intervals). As expected TCP-

based transfers are limited by the available bandwidth on the individual core paths. For ρ < 0.50 the

TCP traffic yields to the cross traffic. On the other hand, for MPTCP-based transfers the sender is able

to utilize its full bandwidth (R=10 Gbps) for very large file sizes. We observe that the transfer rate is

dependent on the utilisation of the cross traffic paths, where the full transfer rate is reached faster for

less utilized cross traffic paths. As expected, for ρ > 0.66, i.e., when the available bandwidth of the

three core links is less than R, the sender cannot reach its full transfer rate.

From the performed measurements we gain the following insights which impact the design of our

SDN controller application, and the protocol selection using NEAT policies. Firstly, in an uncongested

scenario, the current MPTCP setup using the ndiffports path manager consistently performs worse

than the default TCP stack. While the authors of MPTCP note that this path manager has not been

optimized for production use, for the evaluated single sub-flow scenario the performance difference

may be attributed to the congestion control algorithm utilized by MPTCP. On the other hand, as net-

41 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

100 101 102 103 104

Flow size [MB]

2.5

5.0

7.5

10.0

Tr
an

sf
er

 r
at

e
[G

bp
s]

=0
=0.25
=0.50
=0.66
=0.75

(a) TCP traffic

100 101 102 103 104

Flow size [MB]

2.5

5.0

7.5

10.0

Tr
an

sf
er

 r
at

e
[G

bp
s]

=0
=0.25
=0.50
=0.66
=0.75

(b) MPTCP traffic

Figure 16: TCP/MPTCP throughput for different flow sizes on congested links.

work utilisation increases, MPTCP is able to achieve significantly better results than TCP by utilizing

the bandwidth available across multiple core network paths. However, the exact flow size threshold Tf

beyond which the benefits of MPTCP start to show effect is dependent on the network utilisation.

Specifically, the threshold decreases as the utilisation increases. In Figure 16 for each level of utilisa-

tion ρ we mark the flow size thresholds beyond which MPTCP performs better than TCP with a circle.

To evaluate the cause for MPTCP’s sub-optimal performance, we analyze the impact of the used

congestion control algorithms on the FCT. We repeat the flow measurements in an uncongested net-

work setup, where for each file transfer the client generates one connection for both TCP and MPTCP

(single MPTCP sub-flow). Consequently, in this case a similar performance level is expected from

both transport protocols. We evaluate the congestion control algorithms Cubic and New Reno for

TCP, and Cubic, LIA and OLIA for MPTCP connections. Figure 17 depicts the results, where the shaded

areas represent 95% confidence intervals. We also evaluate the baseline performance of the TCP and

MPTCP protocols using statically configured forwarding entries in the SDN switches, corresponding

to tests 1a and 1b in Table 21 for uncongested networks. The measurements show that TCP outper-

forms the MPTCP implementation regardless of the used congestion control algorithms, indicating

that the observed performance difference is not caused by the used CC.

While further investigation is needed to identify the root cause for the unexpected performance of

MPTCP, we argue that operators can expect to encounter similar idiosyncrasies whenever novel pro-

tocols are deployed in a production environment. Ultimately, facilitating such deployments is a key

motivation behind NEAT. The exact protocol behaviour is likely to depend on their parametrization

and the characteristics of the topology in which they are deployed. Thus, we propose an approach

in which the SDN controller directly observes the performance of specific protocol configurations in

order to select the optimal approach for a given environment. Specifically, the controller collects sam-

ples of the actual flow completion times using capabilities of the OpenFlow protocol. To this end, we

make use of the OpenFlow OFPFF_SEND_FLOW_REM feature, which causes switches to notify the con-

troller whenever a configured flow entry expires. By enabling this feature on all relevant flow entries

and assigning an IDLE expiration timer for each, the controller can measure the duration for which

a specific flow was active on the switch. This is achieved by analyzing OFPT_FLOW_REMOVED events

received from the switches and subtracting the configured IDLE time from the flow duration included

in the event packet. Our experiments indicate that the resulting FCT estimates provide a similar level

of accuracy as the FCT estimates measured at the receiver side.

42 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

100 101 102 103 104

Flow size [MB]

2.5

5.0

7.5

10.0

Tr
an

sf
er

 r
at

e
[G

bp
s]

TCP static (cubic)
TCP static (New Reno)
TCP SDN (cubic)
MPTCP static (cubic)
MPTCP SDN (cubic)
MPTCP SDN (olia)
MPTCP SDN (lia)

Figure 17: TCP and MPTCP data transfers with static and dynamically installed flow rules and various
CC algorithms. No cross traffic.

Core layer

x20
hosts

192.168.100.0/24 192.168.101.0/24 192.168.102.0/24 192.168.103.0/24 192.168.104.0/24 192.168.105.0/24

Pod 1 Pod 2

4 Gbps

1 Gbps

Edge layer

Aggr. layer

Figure 18: Emulated fat tree topology.

Large scale datacenter topology To assess the behavior of NEAT-enabled hosts with a larger scale of

hosts and network nodes, a set of experiments were performed, through the emulation of a datacen-

ter network topology. The main goal of the conducted experiments consisted in measuring the per-

formance of the multiple concurrent file transfers within a Software-defined Networking (SDN) data

center, comparing it to the usage of different transport protocols and with a NEAT-based approach.

The following results map to Tests 2 and 3 in Table 21.

A fraction of a fat-tree topology with 2 pods was used for the evaluation, as pictured in Figure 18.

Overall, the topology has 21 switch nodes (9 in the core layer, 6 in the aggregation layer, and 6 in the

edge layer). Each edge switch has 20 hosts connected by one network interface, totaling 120 hosts in

the topology. All the host to edge switch links were configured to have 1 Gbps of bandwidth capacity.

The remaining links were limited to 4 Gbps of capacity. In addition, all the links had a fixed delay of

500 µs. The Common Open Research Emulator (CORE) [7] was used to emulate the topology. Every

switch used Open vSwitch (OVS) [4] as an OpenFlow (OF) software switch (OF switch).

With this topology, it is possible to have 9 different shortest paths between hosts located in different

pods, which includes 3 node-disjoint paths. For intra-pod traffic, it is possible to establish 3 different

43 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

102 103 104 105 106 107 108 109

Flow size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

(a) Flow size distribution

102 103 104 105 106 107 108 109

Flow size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

(b) Discretized flow size distribution

Figure 19: Flow size distributions used in emulations.

paths between the edge switches.

To specify the traffic flow scheduling, regarding their source and destination hosts, starting time

and size, a traffic matrix file was created using the DCT2 Gen traffic generator [40]. The used traffic

matrix contained 39302 flows, scheduled during approximately a minute, with sizes ranging between

667 bytes and 188 MB.

The cumulative distribution function (CDF) of the flow sizes is displayed in Figure 19a. The total

amount of data in all flows combined is 10.51 GB. We emulated various levels of background load on all

the inter-switch links by adjusting their capacity. A background load of 90% was for instance emulated

by limiting the link capacity on all the inter-switch links to 400 Mbps. For some experiments, the flow

size distribution was further discretized into twelve flow sizes as illustrated by the CDF in Figure 19b.

This was done to allow more easy investigation of the performance at different flow sizes.

The SDN controller was built on OpenDaylight (ODL) [5] and featured basic network management

capabilities, namely:

Address tracking The controller keeps track of where the different IP and MAC addresses were last

seen in the network by storing the information about the OF switch ports where the addresses

were seen. This information can then be looked up by the other controller components;

Path calculation A multiple path calculator is used by the SDN controller whenever it is required to

compute multiple paths between different nodes. The controller allows the specification of dif-

ferent path calculation algorithms, though in the scope of these experiments, Yen’s algorithm [41]

was selected, using unitary weights for classifying each link, computing the shortest paths;

Flow scheduling When multiple paths are available between two different hosts, the SDN controller

can apply different scheduling strategies to decide which of the multiple paths are available.

For these experiments, the first path would be randomly picked, and the upcoming ones were

selected by a Round-Robin scheduler;

Elephant flow processing The SDN controller can process elephant and mice flows differently. For

example, a path with low delay can be assigned to mice flows, while elephant flows can be sched-

uled among multiple paths with high capacity. Different signalling methods can be used to dis-

tinguish these two types of flows. Specifically, during the conducted experiments, DSCP values

44 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

were used to mark elephant flows (this value was set to 1), while mice flows would have the de-

fault value (0). In addition, during the conducted experiments only elephant flow packets were

sent to the controller. Therefore, all the computed packets were assigned to the elephant flows;

MPTCP Flow correlation By keeping track of the MPTCP negotiation header fields (exchanged keys

and tokens) during the initial sub-flow TCP packets, the SDN controller can load-balance new

MPTCP sub-flows from the same association to different paths, ensuring that those are as dis-

joint as possible;

Incoming packet handling Whenever a packet is sent from an OF switch to the controller, it enters a

logic pipeline that finds its destination node, computes new paths (if necessary) and installs new

flow rules, according to the scheduled path.

Due to computational restrictions, it is not feasible to send all the packets from new flows to the

SDN controller in a data center network. With that, it is necessary to initially install generic forwarding

rules instead of individual fine-grain matching rules. Equal-cost multi-path routing (ECMP) was used

to configure incoming flows with multiple output port possibilities, whenever available. The output

port of matching flow packets was then computed by a hash value containing some of its header fields

(MAC addresses, IP addresses, TCP/UDP ports, etc.). Since there are multiple forwarding possibilities

to reach out to the different subnets with upstream traffic, i.e. 3 per edge-layer and 3 per aggregation-

layer switches, ECMP allows the different flows to be distributed among the different available paths.

The experiments were conducted in the emulated network with different transport protocol vari-

ants:

• TCP on all flows: All the flows use TCP and are routed according to installed ECMP forwarding

rules;

• NEAT-assisted: TCP for mice flows, MPTCP for elephant flows. Two variants of this approach

were tested:

– Local: The SDN controller is not informed about the elephant flows. All the flows are routed

with ECMP;

– SDN-aided: The first packet of the elephant flows is pushed to the controller, which then

decides where it should be forwarded.

For all the NEAT-assisted tests, the number of MPTCP sub-flows used per association was varied

between 2 and 8. Different elephant flow detection thresholds were also used in the experiments: 10

KB, 100 KB, 1 MB, 5 MB and 10 MB.

All experiments were repeated over 25 iterations. Each emulated iteration was comprised of the

following procedures:

1. Topology initialisation: All the network nodes and links are created by CORE, which also ini-

tialises OVS in all the switch nodes. The SDN Controller IP address is provided in the topology

configuration file and the switches use that address to connect to the SDN Controller.

2. Identification of hosts: The SDN controller initially does not know how many hosts there are,

and where the hosts are located in the network. To populate the controller with this information,

each host sends an ICMP message to an unused IP address located in the same subnet. Since the

OF switches have no forwarding rules for the destination address, they send the packet to the

SDN controller, which uses it to learn the host location.

45 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

3. Installation of forwarding rules: ODL installs the forwarding rules responsible for basic network

connectivity in the OF switches. These rules include:

• Individual flow rules: These rules are installed on the edge-layer switches and each have an

IP address match corresponding to an end-host and, as action, they forward the matching

packets to the port where the host is connected in OVS. Each edge-layer switch has 20 end-

host IP forwarding rules, corresponding to all their connected hosts, respectively.

• Downstream forwarding rules: These rules were installed in the core-layer and aggregation-

layer switches and used a 24-bit prefix network mask as a match. The core-layer forward-

ing rules forwarded every subnet traffic to the corresponding aggregation switch, while the

aggregation-layer forwarding rules forwarded the traffic to the edge-layer switch responsi-

ble for the matching subnet.

• Upstream ECMP forwarding rules: Installation of OF group forwarding rules with ECMP,

as previously described.

4. Traffic generation: This stage can be separated by different steps:

(a) The traffic generator receiver application starts in all the hosts.

(b) The traffic generator sender is launched on every host, providing the individual host num-

ber (from 1 to 120), the traffic matrix file location, and elephant flow strategy (not iden-

tifying elephant flows/identify with DSCP or without DSCP value packet flagging) as input

parameters. When identifying elephant flows, the corresponding detection threshold is also

provided.

(c) Every sender application sorts their flows (the ones with the same source number as the

host) by their starting time.

(d) A signal is sent by the host machine, triggering the start of the flow scheduling on all senders.

(e) For every completed flow, the receiver writes the respective FCT in a log file.

5. Clean-up: After all the flows are completed, the log files are saved, the topology is destroyed and

the emulation host machine restarts. This guarantees the same clean state on every iteration.

With the individual FCT values of every flow from the different iterations, the average FCT values

were calculated.

We first examine the impact of background load on the FCT for different protocol configurations.

Background load values of 0%, 20%, 50%, 70%, 80%, 90%, 91%, 92%, 93%, 94% and 95% were evaluated.

Figure 20 shows the FCT for TCP and for a NEAT-SDN aided approach with an elephant flow threshold

of 10MB. For the number of subflows used by MPTCP, results for a setting of three and eight subflows

are shown in the Figure.

Consistent with the results shown earlier in Figure 16, we can see that the use of MPTCP for ele-

phant flows brings little benefit at low loads. Looking at the FCT for the largest flows (Figure 20b), a

load of 80% is needed before any NEAT-SDN brings any visible benefits. At lower loads the single path

between the end-host and the edge switch constitutes the bottleneck for elephant flows, eliminating

any possible gains from using the multiple paths available between the switches. At higher loads, on

the other hand, we can see a marked improvement when using NEAT-SDN as compared to TCP. As the

bottleneck shifts to the links between switches, elephant flows can take advantage of the path diversity

in the network.

46 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

0 20 40 60 80 100

Background load (%)

20

30

40

50

60

70

80

90

100

110

A
v
e
ra

g
e
 F

C
T
 (

m
s)

TCP

NEAT 3

NEAT 8

(a) FCT for all flows

0 20 40 60 80 100

Background load (%)

1000

2000

3000

4000

5000

6000

A
v
e
ra

g
e
 F

C
T
 (

m
s)

TCP

NEAT 3

NEAT 8

(b) FCT for large flows (> 20 MB)

Figure 20: FCT at different background traffic loads.

Looking at the average FCT over all flow sizes (Figure 20a) there is a small gain also at lower loads.

This gain comes from the medium sized flows benefiting when the large elephant flows use MPTCP,

both from the less aggressive congestion control of MPTCP when competing for capacity on the host

to edge switch link and from the load imposed on the network being more even. As the load increases,

we can see a significant gain also when examining the average FCT over all flow sizes. Examination of

the FCT of flows of varying sizes shows that this gain applies across flow sizes—flows of all sizes benefit

when the elephant flows use MPTCP.

Next we examine the impact of the different protocol configurations on the FCT of different flow

sizes in more detail, also using different elephant flow thresholds. Figure 21 shows the FCT of different

flow sizes using elephant flow thresholds of 1 MB and 10 MB. To make it easier to examine the impact

on different flow sizes we use a traffic matrix with a reduced number of flow sizes as shown in Fig-

ure 19b. The background load in the experiments is set to 90% and the same protocol configurations

as in Figure 20 are used. Both the actual FCTs and the FCTs normalized with respect to the FCTs of

TCP are shown in the Figure.

Looking at the results in Figure 21, we can see that, as expected, the actual gain in FCT from using

NEAT-SDN is larger for larger flow sizes (Figure 21a). Looking at the relative FCTs (Figure 21b), we

see that the trend for the relative performance gain at different flow sizes is less clear, although the

smallest flow sizes still see the smallest gain. We see that the performance when using three or eight

subflows for MPTCP is quite similar, suggesting that three subflows is mostly sufficient for reaping the

benefits of the path diversity available in the network. For a threshold of 1 MB and for small flow sizes,

the extra overhead generated by using eight subflows may even reduce performance. Looking at the

impact of a 1 MB or a 10 MB threshold, we see that using a threshold of 1 MB provides some additional

benefits at this high background load. Particularly, it is clear that using a threshold of 1 MB benefits

flows that have a size between 1 MB and 10 MB.

Overall, the emulation results confirm the conclusions from the physical network infrastructure

experiments. Using MPTCP for elephant flows can improve performance, both for the elephant flows

themselves and for smaller flows, but the gain depends on the traffic load as well as the chosen ele-

phant flow threshold. We saw performance gains from using a smaller threshold (1 MB) in our emula-

tions, but a smaller threshold also increases the load on the controller. We were unable to obtain any

stable results using even smaller thresholds (100 KB or 10 KB) for NEAT-SDN as the generated control

47 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

105 106 107

Flow sizes (bytes)

0

200

400

600

800

1000

1200

A
v
e
ra

g
e
 F

C
T
 (

m
s)

TCP

NEAT SDN 10MB 3

NEAT SDN 1MB 3

NEAT SDN 10MB 8

NEAT SDN 1MB 8

(a) FCT variation over different flow sizes

105 106 107

Flow sizes (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 a

v
e
ra

g
e
 F

C
T

TCP

NEAT SDN 10MB 3

NEAT SDN 1MB 3

NEAT SDN 10MB 8

NEAT SDN 1MB 8

(b) Normalized FCT (TCP) over different flow sizes

Figure 21: FCT over different flow sizes and for different elephant flow thresholds at 90% background
load.

traffic then became too excessive.

DA-LBE results in WAN The DA-LBE transport has a kernel part that manipulates the congestion

price (ECN and delay) and a user-space part that calculates how the congestion price should be ma-

nipulated to keep the service LBE, but in a dynamic manner so that it can meet the given soft deadline.

We use the framework outlined in [23] but, different to the example in that paper, for Vegas based DA-

LBE we inflate the queuing delay since the α and β parameters cannot be changed dynamically on a

per-flow basis in Linux.

We use the setup shown in Figure 12. The Internet path from the DA-LBE-enabled sender at Simula

(Fornebu, Norway) to EMC (Cork, Ireland) traverses 17 hops. We also observe that the path has very

high, fluctuating, and bursty cross traffic making it a good real network test for the DA-LBE mech-

anism. Figure 22 illustrates the operation of the Cubic and Vegas based DA-LBE mechanisms in a

similar scenario to the simulations presented in [23]. The DA-LBE flow would need to send at about

10 Mbps to meet the deadline. We start and stop a number of end-to-end greedy TCP-Cubic flows so as

to compare their behaviour with the DA-LBE flow. Their start/stop times are as follows (colours map

to each of the plots in Figure 22):

(i) t = [0,600] s (blue)

(ii) t = [200,1000] s (red)

(iii) t = [800,1000] s (yellow)

(iv) t = [1100,1600] s (magenta)

(v) t = [1200,2000] s (olive)

(vi) t = [1400,1800] s (cyan)

A light gray line shows the total traffic being sent between Simula and EMC-Cork. The DA-LBE flow

(green) starts at t = 400 s with a deadline at t = 1700 s. From any point in time during the DA-LBE

transmision, the light green (DA-LBE target) line shows the average rate the DA-LBE flow would now

need to send at in order to finish sending its data at the deadline.

The Cubic based DA-LBE flow (green) in Figure 22a operates in an LBE manner, reacting appro-

priately to the traffic dynamics and completing before the deadline. The Vegas based DA-LBE flow

(green) in Figure 22b generally operates in an even more LBE manner due to its more timely reac-

48 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Time (seconds)

100

101

102

103

Se
nd

in
g

ra
te

 (M
bp

s)

DA-LBE
DA-LBE target
BE Cubic #1
BE Cubic #2
BE Cubic #3
BE Cubic #4
BE Cubic #5
BE Cubic #6
Total

(a) Cubic based DA-LBE competing with Internet traffic and a number of “background” TCP Cubic flows.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Time (seconds)

100

101

102

103

Se
nd

in
g

ra
te

 (M
bp

s)

DA-LBE
DA-LBE target
BE Cubic #1
BE Cubic #2
BE Cubic #3
BE Cubic #4
BE Cubic #5
BE Cubic #6
Total

(b) Vegas based DA-LBE competing with Internet traffic and a number of “background” TCP Cubic flows (α = β =
16, varying α = β did not seem to significantly change the behaviour)

Figure 22: Test 4a results (note logarithmic y-axis). DA-LBE data transfers over the WAN between Sim-
ula and EMC with competing TCP flows similar to the scenario in [23]. In addition to (uncontrolled)
Internet traffic, various greedy “background” TCP Cubic flows start and stop through the scenario. The
DA-LBE soft deadline is indicated by the vertical dashed red line at t = 1700 s.

49 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

tion to changes in queueing delay along the path, completing its transfer on the deadline. The Vegas

estimate of base RTT is wrong (higher than it should be) in the initial period (t = [400,450] s). This

causes the Vegas based DA-LBE to be more aggressive than is desirable for an LBE service in that ini-

tial period, a known problem with this type of delay-based congestion control (see [29]). Overall these

real network results are similar to the simulation based results published in [23], giving confidence in

the usefulness of the simulator as a prediction for the performance of the Linux implementation of

DA-LBE across real networks.

DA-LBE Cubic DA-LBE Vegas
0.5

0.6

0.7

0.8

0.9

1.0

Fa
irn

es
s

(a) Jain’s fairness index for DA-LBE data
transfers compared to concurrent TCP Cubic
data transfers. The range of possible values
when comparing 2 flows is [0.5,1].

DA-LBE Cubic DA-LBE Vegas
560

570

580

590

600

610

620

Co
m

pl
et

io
n

tim
e

(s
ec

on
ds

)

(b) Completion times for DA-LBE data trans-
fers competing with the greedy TCP Cubic
data transfers. The deadline of 600 s is shown
with a dashed line.

Figure 23: Test 4b results. A DA-LBE data transfer competing with a standard greedy TCP Cubic trans-
fer across the Internet from Simula to EMC. Box-and-whisker plots with boxes spanning the middle
50% and whiskers extending up to 1.5 times the inter-quartile range.

Test 4b measures the relative LBEness of the DA-LBE transfers with respect to a concurrent greedy

standard TCP Cubic data transfer. The object is to send a 1.625 GB transfer within a 600 s deadline

(the average data rate to achieve this is 21.67 Mbps). Each experiment ran for at least 10 minutes and

was repeated 50 times for each DA-LBE mechanism. The experiments were run overnight on different

nights, but starting at the same time of day. Unlike a simulation, the cross traffic is not within our con-

trol and cannot be measured. This means comparisons between the mechanisms are indicative, but

less certain. Figure 23a shows a box-and-whisker plot of the Jain’s fairness index, which is a measure of

the relative share that TCP Cubic flow has with the concurrent DA-LBE flow. The Vegas based DA-LBE

mechanism has a slightly lower fairness index, indicating that it yields more to the competing Cubic

flow. This is also indicated in Figure 23b which compares completion times in the same experiment.

Vegas-based DA-LBE yields more to the competing TCP Cubic (and cross traffic) flows, completing

closer to the deadline.

50 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

2.4.4 Key findings and implications

In the context of SDN-enabled datacenters the observations and findings of the previous section high-

light a key advantage of the developed SDN integration mechanisms for NEAT end-hosts. In real-world

deployments different transport layer stacks can be expected to exhibit different performance levels

depending on various – potentially unknown – factors. The MPTCP results above motivate the use of

a controller that selects the threshold for elephant flows based on the observed performance of the

individual protocols for a given network topology as well as the measured network utilisation. More

generally, by deploying NEAT at the end-hosts the controller can utilize its global view of the network

to distribute policies that govern the selection of the available transport layer stacks and define associ-

ated thresholds depending on the current network state. Examples of such policies were first outlined

in D3.3, and updated versions are listed in Appendix B, Listings 6 and 7. Using NEAT policies the con-

troller supplies selected clients with: i) an elephant flow threshold, ii) a flow handling approach. As a

result, the controller can fine-tune the threshold for different network destinations based on the cur-

rent utilisation of the relevant network segments. Further, the controller can specify the mechanism to

use for elephant flows, e.g., setting a DSCP marking and/or enabling MPTCP as in the current scenario.

For WAN transfers the tests carried out in a real network demonstrate the efficacy of our imple-

mentation of the DA-LBE meta-congestion control framework for manipulating the performance of

existing congestion control protocols to achieve an LBE service that adapts to an approaching dead-

line. The DA-LBE mechanism achieves this by inflating the particular network “price” appropriate for

the underlying congestion control it utilises: for Vegas queueing delay, and for Cubic the probability of

an explicit congestion notification (ECN). Thus the NEAT stack enables the use of LBE flows for non-

critical file transfers while still allowing the application to specify deadlines by which the flow should

complete.

3 The future of NEAT

The NEAT library is an open source code project that will hopefully be kept alive for a long time by

project members as well as external parties. While we cannot know how future coding / “keeping-

alive” of the software really will unfold, we can already now critically review possible future outcomes,

both in terms of the potential use of the software itself and in terms of the broader architectural im-

plications that the NEAT project has helped the community identify and understand.

For the software itself, we ask ourselves what would happen if the NEAT library becomes widely

deployed. We answer questions such as: why would users have an incentive to use less aggressive

transport protocols? Conversely, if all applications choose the most aggressive protocol, why is there

a need for choice? How does “local” scalability of NEAT play out, in terms of CPU and memory usage?

These concerns are addressed in the following, in Section 3.1.

Then we will look at broader implications of NEAT, in line with the ongoing work in the IETF Trans-

port Services (TAPS) Working Group. For instance, not even considering the specific piece of software

that the project has developed, there could be opportunities to use project outcomes in Android and

Apple; indeed, the TAPS work on APIs is the first step towards a wider access to the approach, providing

opportunities to ease the construction of new applications. NEAT has demonstrated how applications

can be developed and then used even on a Raspberry Pi. NEAT was able to leverage advanced WebRTC

features, such as ICE and selection of the most appropriate transport protocol, etc.

51 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

NEAT outcomes enable future opportunities for next generation networks. The NEAT architecture

could allow future Internet applications to take advantage of advanced features to use the techniques

and interfaces developed in NEAT. The consistent interface offered by NEAT could enable develop-

ment of innovative support for new emerging multi-service network technologies and features. It

could be used as a new basis to take best advantage of the diverse network capabilities provided by

5G networks (e.g., opportunistic access to very high capacity radio interfaces, ways to optimise how

applications interface to specific radio resource capabilities through Network Slicing, etc.).

To better understand the implications of NEAT on the network stack and network application de-

velopment in general, we discuss the most recent activities in the TAPS Working Group in Section 3.2.

3.1 Scalability

Scalability has multiple facets. If NEAT would be widely deployed, the following problems might arise:

1. Control traffic from Happy Eyeballs (HE) might overwhelm the Internet.

2. Too aggressively transmitted data traffic might overwhelm the Internet.

3. A NEAT client or server might quickly cease to operate as the number of outgoing or incoming

requests increases.

We call the first two concerns “global” scalability and the latter “local” scalability. Regarding the

first concern in the list, HE is already used in several ways by large-scale production systems: Google’s

Chrome browser and Mozilla’s Firefox browser apply it for QUIC-vs-TCP, and Apple devices have been

applying it for IPv6-vs-IPv4, using a sophisticated strategy in line with the description in [14]. In the

following two subsections, we will consider concern number 2: protocol aggressiveness. Then, we will

offer a short discussion of the third concern, which we call “local” scalability: overhead in terms of

CPU and memory usage that is incurred by NEAT on a host.

3.1.1 Towards more aggressive protocols?

When protocols are used to reserve network capacity (e.g., using network signalling to request specific

capacity, or to prioritise some traffic over other traffic), it must be ensured that users do not obtain

more than they are allowed to consume within the traffic class they use. Additionally, mechanisms

need to be in place to police the resources being consumed/reserved to ensure this use is acceptable

to other flows that share the capacity. Such resource provisioning issues are not the primary focus

of the NEAT project. In the following, we therefore assume that any special usage of NEAT (e.g., to

provide capacity reservations) is handled by existing methods (such as the provisioning methods used

in SDN, or through the use of pre-provisioned DiffServ classes).

The focus of NEAT is therefore on sharing within a capacity class, where the potential fairness

problem that may arise from aggressive behavior in the network is in fact a congestion control con-

cern much more than it is a protocol concern (see the SCTP vs. TCP example in the next subsection).

RFC 6077 [31] defines congestion control as a “(typically distributed) algorithm to share network re-

sources among competing traffic sources”.

Such sharing should be efficient and fair, for some reasonable definition of fairness. Indeed, a

single flow that does not implement any form of congestion control can completely push out any

other flows that share a bottleneck with it; in the 1990’s, this problem has led to concerns about a

global congestion collapse—a “tragedy of the commons” as the result of every actor selfishly moving

52 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

towards more and more aggressive congestion control. This culminated in a proposal to mandate

“TCP-friendliness” (which was then a commonly accepted notion in the IETF for a while): never send-

ing more than a conforming TCP implementation under the same circumstances [20].

The notion of TCP-friendliness became questioned in the early 2000’s with the advent of conges-

tion control mechanisms that were not TCP-friendly, yet avoided congestion collapse by falling back

to a TCP-compatible behavior when the packet loss ratio becomes high. In 2004, the “Binary Increase

Control” (BIC) algorithm achieved unexpected fame via a mistake in a press release4, and shortly after,

the BIC congestion control algorithm became the default mechanism in Linux. The default conges-

tion control choice in Linux was updated to “CUBIC” congestion control in 2006. Interestingly, this

change was made although (or because?) CUBIC is less aggressive than BIC [26]. CUBIC backed off in

response to congestion by multiplying the sender’s congestion window (cwnd) by 0.8 at first (instead

of the standard TCP’s value of 0.5). This factor was later adjusted down to 0.7, leading to a less ag-

gressive behaviour (see [27] for an in-depth study of the choice of back-off factor). Put together with

the table of other Linux updates in [22], this forms ample evidence of a move towards less, not more

aggressive congestion control, for CUBIC congestion control updates in the Linux kernel.

Meanwhile, the very idea of “TCP-friendliness” as a fairness notion has been questioned [13], and

congestion control mechanisms that seek to minimize queuing delay while trying to compete with

TCP have been proposed for production use [24, 25, 42]. Reducing latency has become a much more

important goal than reducing the completion time of long transfers (i.e., being aggressive) for many

common use cases, and “Lower-than-Best Effort” (LBE) mechanisms have been deployed that are

extra-cautious (e.g., LEDBAT has been used for years in BitTorrent and for Apple’s Operating System

updates) [36]. Such mechanisms serve a user’s own interest in minimal disruption of higher-priority

flows on a shared bottleneck. For example, once a video application has a sufficient amount of data

buffered, it might want to move to an LBE-like congestion control for more buffering in order to pre-

serve its own ability to execute high priority actions (like changing videos in reaction to user interac-

tions) without fighting bufferbloat. Also, certain data transfers are known by the application to be large

but not urgent, making the transport system work better if these flows are sent in the background. This

concerns Operating System update downloads and background file system synchronization applica-

tions such as DropBox, for example.

To summarize: despite a concern from approximately 15-20 years ago [20] that congestion control

mechanisms would move towards more and more aggressive behavior, this has in fact not happened—

the incentives do not appear such that more aggressive is strictly better. The primary goal of modern

congestion controls is to either be more efficient in aggregate (and thus grow the pie of what is possi-

ble) or address severe shortcomings of legacy mechanisms (such as TCP Reno’s inability to use all the

available bandwidth for flows of typical durations). Protocols that simply shift bandwidth onto their

own streams in a zero-sum (or worse) game are truly not in vogue at all.

3.1.2 Why is there a need for choice?

Some of the trade-offs that NEAT makes are entirely different from the trade-offs of more vs. less ag-

gressive congestion control. For example, the SCTP protocol is generally slightly less efficient than

TCP due to missing hardware support, but it may be faster for applications that can accept messages

arriving out-of-order (because TCP does not support out-of-order message delivery, it produces head-

of-line blocking delay for such applications). Yet, the congestion control used by both protocols is the

4http://www4.ncsu.edu/~rhee/export/bitcp/bicfaq.htm

53 of 77 Project no. 644334

http://www4.ncsu.edu/~rhee/export/bitcp/bicfaq.htm

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

same—hence, the trade-off of choosing SCTP vs. TCP is orthogonal to the trade-off of using more vs.

less aggressive congestion control.

Applications, especially web applications, have already been working with different attributes of

transports for many years. HTTP initially used one TCP flow per request (there can be 100 requests

on a typical page) because of the convenient stream metaphor. However the interaction with the TCP

transport was bad—a typical flow terminated before it ever got out of slow start and performance was

dominated by the latency of handshakes and growing the congestion window—in effect congestion

control was rarely applied and the effective throughput was often less than the available bandwidth.

High latency problems are often addressed via parallelism and HTTP did this by using several TCP

streams in parallel.

The advent of HTTP/2 changed the landscape by bringing many of those flows into a single TCP

flow and congestion context with framing for the individual flows inside the TCP application data. The

aggregation of that data has better congestion control properties in the sense that HTTP/2 is more akin

to an elephant flow than the set of old HTTP mice flows it replaces. However it stood at a disadvan-

tage in one way—the single flow’s initial window is smaller than the aggregate set of initial windows it

replaces.

Data at the time showed the median web flow to terminate with a congestion window of about 30

segments while a TCP flow was starting with an initial window of just 3. As a result the initial value was

raised to 10 in conjunction with lowering the overall number of flows with a net positive impact to the

overall environment.

The value 10 appears to be a good general choice today; it is likely to become too small again within

some years. Whether 10 is a good or bad value depends on various factors—e.g., the potential usage

of pacing, and typical connection speeds, which differ widely between the various countries of the

world. Given that applications generally change faster than the operating system, they will always

need to be able to configure the system for optimal performance, depending on their specific needs.

NEAT gives applications a large number of knobs without requiring application programmers to re-

invent the wheel for common mechanisms that the transport layer itself can and should take care of

(e.g., performing “happy eyeballs” to discover which protocol is available along an end-to-end path).

3.1.3 Local scalability

We evaluated happy eyeballs on the server side between TCP and SCTP in an already published and

reported paper [32]. Our results showed that, although HE increases CPU load as compared with a sin-

gle TCP or SCTP connection establishment, the increase is in the order of 10% for 35 KiB Web objects,

i.e., fairly typical Web objects, and is even smaller in those cases where HE takes place between TLS-

encrypted connections. Moreover, our investigation in [32] showed that the caching of connection-

request results substantially reduces the CPU load due to protocol racing, especially in comparison

with the cost of TLS.

Complementing these earlier results, this section now elaborates on the resource utilization of a

client-side NEAT system during connection establishment.5 This has been done by comparing a NEAT

application with an identical application implemented with libuv [2] or kqueue [30]. Since libuv builds

upon kqueue and NEAT builds upon libuv, this comparison illustrates the direct overhead of using

the NEAT library compared to a more low-level approach. Strictly speaking, libuv vs. NEAT shows

5Note that some related data, from tests in the MONROE testbed, are also reported in Table 6 in Section 2.1 (Celerway’s use
case). The overhead numbers in this table were also obtained at the client side, but these measurements were not limited to
connection setup.

54 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Figure 24: The TEACUP testbed at UiO.

the overhead of NEAT. However, including kqueue results enables us to understand how the resource

overhead of a callback-based approach like libuv compares to a simple event handler like kqueue.

This gives a better context to understand the resource overhead of NEAT compared to libuv. Also,

these libraries impose an increased level of abstraction: libuv provides platform-independence, while

NEAT extends upon this with protocol-independence. A comparison of the three enables us to see the

overheads to provide these services.

We have considered CPU usage and memory usage of such applications as metrics for evaluating

the resource overhead since these metrics directly affect the scalability of a NEAT-based application.

Figure 24 illustrates the experimental network testbed setup we have used for our experiments.

We use TEACUP (TCP Experiment Automation Controlled Using Python) to control our experiments,

which enables us to easily configure and automate the experiment runs [6]. TEACUP only supports

running simple TCP experiments by default, and does not support running custom traffic generators

like a NEAT application. We therefore extended the TEACUP code with the support for custom traffic

generators and custom loggers. This enabled us to test the scalability and resource overhead of NEAT

as the number of flows increases.

TEACUP is installed on the control server and is responsible for establishing SSH connections to

the test hosts to start and stop traffic generators, traffic sinks and loggers in the experiments. It is also

responsible for configuring the router with the correct shaping, scheduling, policing and dropping

rules for the experiments. TEACUP is controlled by a configuration file which among other things

controls which test hosts should be used as traffic generators and traffic sinks, and how parameters

should be varied for each experiment run. Note that TEACUP only communicates with the test hosts

over the control VLAN, and does not interfere with the experimental traffic sent on the experiment

VLANs.

Table 23 presents the relevant hardware comprising the test hosts of the TEACUP testbed deployed

at UiO. In our experiments we ran the server application on one test host and the client application

on another. The router was configured to shape the bandwidth at 10 Mbit/s for both of the outbound

55 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Hardware type Model

Machine HP Compaq 8100 Elite CMT

CPU Intel Core i7-870 @ 2.93 GHz

RAM 4 x Samsung 4GB PC3-10600 DDR3-1333MHz

NICs 2 x Intel I210 Gigabit Network Connection

Table 23: The hardware components of the TEACUP testbed test hosts.

interfaces facing the experiment networks. Data was also delayed for 50 ms in both egress interfaces

of the router using netem [3] to emulate a RTT of 100 ms. Socket buffers at the endpoints (test hosts)

were set sufficiently large so that the router can become the bottleneck without any limitation of the

data rate at the endpoints.

Unless noted otherwise, all the following graphs in this section show minimum, 10th percentile,

median, 90th percentile, and maximum values to give an indication of the data distribution. All the

results are measured on the client-side, and we evaluated CPU usage and memory usage for differ-

ent numbers of flows to determine if the resource usage is linearly or exponentially increasing with

the number of flows. We considered 1, 2, 4, 8, ..., 256 opened flows in our experiments, and all the

experiments were run 10 times.

CPU usage Here we consider the accumulated CPU time spent when establishing connections us-

ing NEAT, libuv and kqueue. In the case of NEAT, we measure the CPU time spent from the point

neat_init_ctx is issued until all flows have successfully connected and on_connected has been called

for each of the flows6. In the case of libuv, we measure the CPU time spent from the point the

uv_loop_init call is issued until all flows are writable and the associated callbacks have been called.

In the case of kqueue, we measure the CPU time spent from the point kqueue is issued to create the

kqueue until all the flows have connected and kevent has returned successfully with each of the flows

marked writable. Alternatively we could start to measure the data right before we start the event loop,

but then we would not measure the overhead of issuing connect for all flows in the cases of libuv and

kqueue.

We consider the CPU time of all processes in the system that contribute to the global CPU usage

and that are affected by the NEAT-, libuv- and kqueue-based applications. We have considered the

“kernel” and “rand_harvestq” processes in addition to the application itself, and calculated the sum of

the user and system CPU times for these processes in order to find the accumulated CPU usage of these

processes at a given point in time. By calculating the difference of the accumulated CPU times for two

specific points in time, we find the CPU time spent in an interval. This enables us to benchmark the

CPU usage of a particular part of the code. We used the clock_gettime function to sample the current

accumulated CPU time of a particular process.

Figure 25 and Figure 26 show that the CPU usage of kqueue and libuv are almost identical when

opening connections, and that the overhead of using NEAT is quite large by comparison. The reason

why libuv and kqueue results are very similar is that libuv only provides a simple abstraction layer

over the kqueue event loop. However, NEAT is an advanced library with many more features and

components, which increases the CPU time.

6For details on the NEAT API calls, see [28, Appendix B].

56 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 4 8 16 32 64 128 256

C
P
U

 t
im

e
 (

m
s)

Number of flows opened

(a) kqueue

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 4 8 16 32 64 128 256

C
P
U

 t
im

e
 (

m
s)

Number of flows opened

(b) libuv

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 4 8 16 32 64 128 256

C
P
U

 t
im

e
 (

m
s)

Number of flows opened

(c) NEAT

Figure 25: The CPU time spent when establishing connections using TCP at the client-side. The RTT
of the link was 100 ms and the bandwidth of the link was shaped at 10 Mbit/s at the bottleneck router.

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 4 8 16 32 64 128 256

C
P
U

 t
im

e
 (

m
s)

Number of flows opened

(a) kqueue

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 4 8 16 32 64 128 256

C
P
U

 t
im

e
 (

m
s)

Number of flows opened

(b) libuv

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 4 8 16 32 64 128 256

C
P
U

 t
im

e
 (

m
s)

Number of flows opened

(c) NEAT

Figure 26: The CPU time spent when establishing connections using SCTP at the client-side. The RTT
of the link was 100 ms and the bandwidth of the link was shaped at 10 Mbit/s at the bottleneck router.

In order to understand the reasons behind higher CPU usage of the NEAT application, we per-

formed CPU profiling using the Callgrind tool of Valgrind. This profiling tool enables us to check

how many CPU cycles each function of the application is using, and also includes the number of CPU

cycles imposed by all other functions called from within the function. It can also profile the CPU cycles

of loaded shared libraries, which enables us to measure the CPU cycles for every function of the NEAT

Library. Normally, the shared libraries are loaded on-demand during runtime, but to exclude the CPU

cycles from this loading process from our results, we enabled the LD_BIND_NOW environment variable

to load all shared libraries before application startup. It is important to note that Callgrind signif-

icantly slows down the execution of the application because different counters are increased during

runtime. CPU time and CPU cycles are also different metrics, but the number of CPU cycles gives a

good indication about the bottleneck in the code.

kqueue libuv NEAT

main 1,122,359 1,343,781 63,804,570

start_event_loop 589,677 – –

neat_start_event_loop – – 32,782,775

uv_run – 702,909 32,782,728

on_connected 573,952 615,936 807,680

Table 24: Total number of CPU cycles executed by various functions in the kqueue, libuv and NEAT
client applications. Here we show the total number of CPU cycles executed when opening 256 TCP
flows for a specific test run. (Note that we have enclosed the kqueue event loop in a separate function
start_event_loop to make it more comparable to NEAT and libuv.)

57 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Function CPU cycles

neat_open 22,889,216

neat_set_property 7,005,184

neat_new_flow 702,464

neat_init_ctx 260,664

neat_set_operations 39,936

Table 25: Total number of CPU cycles executed by some of the functions offered by the NEAT API
outside the event loop. The results are based on opening 256 TCP flows on the client-side. This means
that the total for e.g. neat_open is the total CPU cycles spent when calling neat_open 256 times.

Function CPU cycles

he_connected_cb 17,823,232

nt_send_result_connection_attempt_to_pm 16,121,856

nt_resolver_literal_timeout_cb 11,641,344

open_resolve_cb 10,925,056

uvpollable_cb 1,251,584

nt_connect 689,920

Table 26: Total number of CPU cycles executed by some of the internal NEAT functions inside the
NEAT event loop. The results are based on opening 256 TCP flows on the client-side. Some of the listed
functions overlap in the sense that one function eventually calls the other, e.g., he_connected_cb
calls nt_send_result_connection_attempt_to_pm.

As can be seen in Table 24, NEAT uses a lot more CPU cycles than kqueue and libuv both within

the event loop and outside the event loop. By digging into the profile results, we can determine the

parts of the code that are responsible for this high usage. Table 25 shows the CPU cycles for the NEAT

functions called outside the event loop. It shows that the functions that are called 256 times in our

example scenario have the largest overhead (neat_open, neat_set_property, neat_new_flow).

When we dig into these functions, we find that almost all of the CPU usage is derived from calling

various JSON operations from the libjansson library which is used by NEAT internally to handle NEAT

properties. For instance, nt_json_send_once which is called from send_properties_to_pm in

neat_open uses 8,683,264 CPU cycles to convert the JSON properties to a string for all of the flows,

and 6,300,672 CPU cycles are spent in neat_set_property to convert the string representation of

the NEAT properties to JSON objects.

Table 26 lists some of the internal NEAT functions with the largest CPU overhead. By analyzing

the profile results, we divide the high-cost functions into pollable functions and timer functions. The

overhead of polling occurs when the he_connected_cb internal callback is called, which is done

whenever the Happy Eyeballs candidate has connected. Every time this happens, an attempt is made

to push the results of the connections to the CIB of the Policy Manager by using a JSON string. As

can be seen from the table, 16,121,856 CPU cycles are needed for this operation. The overhead of

timer functions is related to address-to-name resolving and gathering of interface information for

every source-destination pairs for all flows.

Compared to the “pure” connection setups of kqueue and libuv, NEAT carries out a quite large

amount of extra work. If the goal were to optimise timing, some functionality could be removed in

58 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

exchange for faster operation, and the code could be optimised in various ways (e.g., by caching some

more data—the results of queries that are made repeatedly in these tests). In particular, we have found

that the JSON operations and communication with the Policy Manager introduce a lot of overhead for

NEAT. In an optimised version, JSON could be replaced with a binary representation such as CBOR

[10], and the methods for communicating between the NEAT Framework and the Policy components

could be improved with caching, shared-memory, etc. Either way, the NEAT library is a prototype, not

production-ready code, and the primary goal was rich functionality rather than speed.

Memory usage Here we consider the memory impact of establishing connections in NEAT, libuv and

kqueue. We sample memory data at the same places in the code as described in the above paragraph

about CPU usage, and the graphs show how much the memory usage has increased during connection

establishment. We measure the Resident Set Size (RSS) of the applications, which gives the total num-

ber of bytes that are currently in physical memory for the process. Since modern computers rarely

need to move RAM memory into swap memory, the RSS gives a good indication of the actual memory

usage of an application. To sample the RSS we issue the command top -o rss -p <pid> where <pid>

is the process ID of the application. Similar to what was done for profiling CPU usage, the results are

based on opening 256 TCP or SCTP flows on the client side.

Figures 27 and 28 show the memory impact of connection establishment for NEAT, libuv and

kqueue using either TCP or SCTP. Like the CPU results, the kqueue and libuv results are for the most

part identical, and NEAT introduces some overhead, but this overhead is proportionally not as large

as in the CPU results. To better understand what part of the NEAT code introduces this memory over-

head, we performed memory profiling using the Massif tool of Valgrind. This tool enables us to

measure the current heap usage, stack usage, or total virtual memory page usage throughout the exe-

cution of the application. In our investigation we considered the heap usage of NEAT because we find

that this gives a good indication of the memory usage and can be compared to the graphs showing the

increase in RSS.

In libuv, we find that about 75% of the memory is allocated in on_connected while about 25% of

the memory is allocated in main. The total heap usage is approximately 3.4 MiB. In NEAT, we find that

about 29% of the memory is allocated in on_connected, 9% allocated in main, and that about 62%

of the memory is allocated either within the NEAT event loop or within the functions of the NEAT API.

25% of the total memory consumption is related to allocating memory for the platform- and protocol-

independent representation of network sockets for all Happy Eyeballs candidates internally in NEAT

(struct neat_pollable_socket) in the open_resolve_cb function. Also, about 25% of the total memory

consumption is related to allocating such internal socket representations when calling neat_open

for all of the flows. The remaining memory usage seems to be related to various JSON allocations,

allocation for the neat_flow structures, etc. The total memory usage was sampled to be about 8.9 MiB.

The memory overhead of NEAT does not seem to be very large considering that the library must

keep information about various platform- and protocol-specific details that are not stored in the sim-

ple kqueue and libuv applications we have used throughout our comparisons. Also, as memory is

becoming increasingly cheap, memory consumption is rarely the bottleneck of an application. Poten-

tial improvements to the memory usage in NEAT could be to divide the internal socket structures into

several smaller structures that are related to specific protocols or specific platforms.

59 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 8 16 32 64 128 256

M
e
m

o
ry

 u
sa

g
e
 (

ki
lo

b
yt

e
s)

Number of flows opened

(a) kqueue

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 8 16 32 64 128 256

M
e
m

o
ry

 u
sa

g
e
 (

ki
lo

b
yt

e
s)

Number of flows opened

(b) libuv

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 8 16 32 64 128 256

M
e
m

o
ry

 u
sa

g
e
 (

ki
lo

b
yt

e
s)

Number of flows opened

(c) NEAT

Figure 27: The increase in application memory consumption when establishing connections using
TCP at the client-side. The RTT of the link was 100 ms and the bandwidth of the link was shaped at 10
Mbit/s at the bottleneck router.

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 8 16 32 64 128 256

M
e
m

o
ry

 u
sa

g
e
 (

ki
lo

b
yt

e
s)

Number of flows opened

(a) kqueue

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 8 16 32 64 128 256

M
e
m

o
ry

 u
sa

g
e
 (

ki
lo

b
yt

e
s)

Number of flows opened

(b) libuv

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 8 16 32 64 128 256

M
e
m

o
ry

 u
sa

g
e
 (

ki
lo

b
yt

e
s)

Number of flows opened

(c) NEAT

Figure 28: The increase in application memory consumption when establishing connections using
SCTP at the client-side. The RTT of the link was 100 ms and the bandwidth of the link was shaped at
10 Mbit/s at the bottleneck router.

3.2 Evolution towards a standard API with implementation guidance

NEAT has successfully shown that we can modularise the stack to avoid ossification so that there are

no longer strong barriers to evolution. We have shown how the API can be raised, what is needed and

what can now be introduced into this ecosystem to enable evolution of the way stacks operate and

how a new design can be used to integrate with changes in the network.

Four components can optimise the matching of application requirements to network capabili-

ties/characteristics of the service:

1. Application developers could know that they need relatively little capacity, but know perfor-

mance benefits significantly from lower latency. A user may have a preference to lower cost

for a video they wish to watch—for instance postponing a large download until a lower cost ser-

vice is available. Maybe a user can access a corporate network for high-speed access, but only

restricted to specific uses. NEAT brings a new API that allows applications/users to express their

requirements or expectations to the endpoint protocol stack, so the stack becomes aware of how

the application will use the network.

2. The second change is to allow the stack to choose between multiple mechanisms. The choice

could include transport protocols, features of transport protocols, or the availability of the net-

work to offer paths with lower latency, higher throughput, better resilience, etc.

3. No single solution can provide the best match between the network and the application. This re-

quires policy to inform the selection and to decide between alternate ways of using the network.

60 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

RFC 8095

RFC 8304

minset

RFC 8260 RFC 8085

taps-arch taps-
interface

taps-impl

taps-neat taps-he

RFC 8303

Figure 29: Dependencies of NEAT (co-)authored TAPS documents. Abbreviated names: minset =
draft-ietf-taps-minset [38], taps-neat = draft-fairhurst-taps-neat [16], taps-he = draft-grinnemo-taps-
he [21], taps-arch = draft-pauly-taps-arch [34], taps-interface = draft-trammell-taps-interface [37],
taps-impl = draft-brunstrom-taps-impl [14].

4. The final component is how the stack interfaces to the network. Future networks will provide a

much wider range of network services. Stacks can discover the capabilities of a range of network

services that are currently available. In the future, some networks will provide specific features

on demand—e.g., using SDN techniques, this can provide more than one different network ser-

vice over a single interface.

NEAT has resulted in a shift in the view of people in the community. The initial perspective of the

IETF was that the work was exploratory, and was interesting research. This started with a Charter for

the IETF TAPS working group to publish a small number of RFCs. As the momentum grew, there was

growing consensus that TAPS was an important area of work, and the number of Chartered RFCs grew.

The outputs of the TAPS WG have now been embraced by multiple players and finally are resulting in

Internet Proposed Standards that can be used by industry.

The most recent TAPS proposal for the interface that the Internet’s transport layer should expose

is described in draft-trammell-taps-interface [37], together with its companion documents which de-

scribe the underlying architecture [34] and give guidance on how to implement a transport system that

offers this interface [14]. At the IETF-101 meeting in London, on March 2018, the TAPS Working Group

expressed its clear consensus to adopt these three documents. NEAT has had a significant impact

on these documents, both directly (by co-authoring them) and indirectly (by writing Internet-drafts

that have by themselves influenced these three documents). Figure 29 gives an overview of the role

that NEAT (co-)authored documents have played in the development of the three planned final doc-

uments of TAPS: RFCs 8095 [19], 8303 [39] and 8304 [15] constitute the first step in the charter of the

TAPS Working Group, which was to analyse existing transport protocols. Following this first step, TAPS

intends to define a minimal set of Transport Services that end systems should support; this is covered

by the NEAT-authored “minset” document [38] and a security-related companion document [33] that

is not written by NEAT participants and is therefore not shown in Figure 29.

When it comes to finally specifying the abstract interface and giving guidance on how to imple-

ment it, then this specification is—in line with the TAPS charter—naturally based on the “minset”

61 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

document. Care was taken to ensure that the interface in [37] can support all services defined in the

“minset”, and the implementation guidance in [14] refers to the mapping from services to protocols

that the “minset” has identified for several functions. Moreover, the latter document explains how

to implement “Happy Eyeballs” (called “racing” in [14]); as this explanation in [14] was developed, it

was decided to abandon the “taps-he” document [21] and instead re-use its text in [14]. Similarly, the

“taps-neat” document [16] was abandoned but had a very immediate influence on [37].

NEAT is currently the only known open source implementation of a TAPS-conforming transport

system. While the interface that is described in [37] offers a slightly higher abstraction layer than the

NEAT API, NEAT provides all the technical building blocks that are needed to implement a system that

offers this more abstract interface. Thus, implementing a shim layer that maps the interface in [37] to

NEAT should be extremely easy; to put “easy” into perspective, we judge the complexity and effort to

be approximately equal to the amount of work that is usually done in the course of a master thesis.

4 Conclusions

In this report we presented key outcomes of WP4 with a focus on Task 4.3. Building upon previous WP4

work and the test plan proposed in Deliverable D4.2 [11] this deliverable has addressed the validation

and evaluation of NEAT by means of experiments, carried out as part of the developed industrial use

cases.

The document provides a detailed overview of the experimental work carried out, including: ex-

perimental setups and topologies, how the test plan was actually implemented, and a summary of

the most important results and their significance. The presented results demonstrate the feasibility of

the NEAT approach in realistic environments with a clear mapping to use cases relevant to the core

business of the involved industry partners.

Finally, the report offers an analysis of the future evolution of NEAT with an emphasis on scalability

issues — both in end-hosts running the NEAT stack and in regards to the impact that wide adoption

of NEAT might have on the Internet. Moreover, we discussed the influence of the work carried out in

the project on IETF standardisation efforts, in particular on the efforts by the TAPS working group to

develop a future standard transport API.

62 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

References

[1] D-ITG (Distributed Internet Traffic Generator). [Online]. Available: http://traffic.comics.unina.

it/software/ITG/

[2] libuv library. [Online]. Available: http://libuv.org/

[3] NetEm - Network Emulator. [Online]. Available: http://man7.org/linux/man-pages/man8/

tc-netem.8.html

[4] Open vSwitch. [Online]. Available: https://www.openvswitch.org/

[5] OpenDaylight. [Online]. Available: https://www.opendaylight.org/

[6] TCP Experiment Automation Controlled Using Python (TEACUP). [Online]. Available: http:

//caia.swin.edu.au/tools/teacup/

[7] J. Ahrenholz, “Comparison of core network emulation platforms,” in Military Communications

Conference, 2010-MILCOM 2010. IEEE, 2010, pp. 166–171.

[8] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network

architecture,” in Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication,

ser. SIGCOMM ’08. New York, NY, USA: ACM, 2008, pp. 63–74. [Online]. Available:

http://doi.acm.org/10.1145/1402958.1402967

[9] D. Anipko (Ed.), “Multiple Provisioning Domain Architecture,” RFC 7556 (Informational), RFC

Editor, Fremont, CA, USA, pp. 1–25, Jun. 2015. [Online]. Available: https://www.rfc-editor.org/

rfc/rfc7556.txt

[10] C. Bormann and P. Hoffman, “Concise Binary Object Representation (CBOR),” RFC 7049

(Proposed Standard), RFC Editor, Fremont, CA, USA, pp. 1–54, Oct. 2013. [Online]. Available:

https://www.rfc-editor.org/rfc/rfc7049.txt

[11] Z. Bozakov, A. Brunstrom, D. Damjanovic, G. Fairhurst, A. F. Hansen, T. Jones, N. Khademi,

A. Petlund, D. Ros, T. Rozensztrauch, M. I. S. Bueno, D. Stenberg, M. Tüxen, and F. Weinrank,

“Final version of NEAT-based tools,” The NEAT Project (H2020-ICT-05-2014), Deliverable D4.2,

Sep. 2017.

[12] Z. Bozakov, S. Mangiante, A. Brunstrom, D. Damjanovic, G. Fairhurst, A. Hansen, T. Jones,

N. Khademi, A. Petlund, , D. Ros, D. Stenberg, M. Tüxen, and F. Weinrank, “NEAT-based applica-

tions and first version of NEAT-based tools,” The NEAT Project (H2020-ICT-05-2014), Deliverable

D4.1, Mar. 2017.

[13] B. Briscoe, “Flow rate fairness: Dismantling a religion,” ACM SIGCOMM Computer Communica-

tion Review, vol. 37, no. 2, pp. 63–74, Apr. 2007.

[14] A. Brunstrom (Ed.), T. Pauly (Ed.), T. Enghardt, K.-J. Grinnemo, T. Jones, P. Tiesel, C. Perkins,

and M. Welzl, “Implementing interfaces to transport services,” Internet Draft draft-brunstrom-

taps-impl, work in progress, Feb. 2018. [Online]. Available: https://tools.ietf.org/html/

draft-brunstrom-taps-impl

63 of 77 Project no. 644334

http://traffic.comics.unina.it/software/ITG/
http://traffic.comics.unina.it/software/ITG/
http://libuv.org/
http://man7.org/linux/man-pages/man8/tc-netem.8.html
http://man7.org/linux/man-pages/man8/tc-netem.8.html
https://www.openvswitch.org/
https://www.opendaylight.org/
http://caia.swin.edu.au/tools/teacup/
http://caia.swin.edu.au/tools/teacup/
http://doi.acm.org/10.1145/1402958.1402967
https://www.rfc-editor.org/rfc/rfc7556.txt
https://www.rfc-editor.org/rfc/rfc7556.txt
https://www.rfc-editor.org/rfc/rfc7049.txt
https://tools.ietf.org/html/draft-brunstrom-taps-impl
https://tools.ietf.org/html/draft-brunstrom-taps-impl

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

[15] G. Fairhurst and T. Jones, “Transport Features of the User Datagram Protocol (UDP) and

Lightweight UDP (UDP-Lite),” RFC 8304 (Informational), RFC Editor, Fremont, CA, USA, pp.

1–20, Feb. 2018. [Online]. Available: https://www.rfc-editor.org/rfc/rfc8304.txt

[16] G. Fairhurst, T. Jones, A. Brunstrom, and D. Ros, “The NEAT interface to transport services,”

Internet Draft draft-fairhurst-taps-neat, work in progress, Nov. 2017. [Online]. Available:

https://tools.ietf.org/html/draft-fairhurst-taps-neat

[17] G. Fairhurst, T. Jones, Z. Bozakov, A. Brunstrom, D. Damjanovic, T. Eckert, K. R. Evensen, K.-J.

Grinnemo, A. F. Hansen, N. Khademi, S. Mangiante, P. McManus, G. Papastergiou, D. Ros,

M. Tüxen, E. Vyncke, and M. Welzl, “NEAT Architecture,” NEAT Project (H2020-ICT-05-2014),

Deliverable D1.1, Dec. 2015. [Online]. Available: https://www.neat-project.org/publications/

[18] G. Fairhurst, T. Jones, M. Tuexen, and I. Ruengeler, “Packetization layer

path mtu discovery for datagram transports,” Working Draft, IETF Secretariat,

Internet-Draft draft-ietf-tsvwg-datagram-plpmtud-01, March 2018, http://www.ietf.org/

internet-drafts/draft-ietf-tsvwg-datagram-plpmtud-01.txt. [Online]. Available: http://www.

ietf.org/internet-drafts/draft-ietf-tsvwg-datagram-plpmtud-01.txt

[19] G. Fairhurst (Ed.), B. Trammell (Ed.), and M. Kuehlewind (Ed.), “Services Provided by IETF

Transport Protocols and Congestion Control Mechanisms,” RFC 8095 (Informational), RFC

Editor, Fremont, CA, USA, pp. 1–54, Mar. 2017. [Online]. Available: https://www.rfc-editor.org/

rfc/rfc8095.txt

[20] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion control in the internet,”

IEEE/ACM Transactions on Networking, vol. 7, no. 4, pp. 458–472, Aug 1999.

[21] K.-J. Grinnemo, A. Brunstrom, P. Hurtig, N. Khademi, and Z. Bozakov, “Happy Eyeballs

for transport selection,” Internet Draft draft-grinnemo-taps-he, work in progress, Jun. 2017.

[Online]. Available: https://tools.ietf.org/html/draft-grinnemo-taps-he

[22] S. Ha, I. Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed tcp variant,” SIGOPS Oper. Syst.

Rev., vol. 42, no. 5, pp. 64–74, Jul. 2008. [Online]. Available: http://doi.acm.org/10.1145/1400097.

1400105

[23] D. Hayes, D. Ros, A. Petlund, and I. Ahmed, “A framework for less than best effort congestion

control with soft deadlines,” in Proceedings of IFIP Networking, Stockholm, Jun. 2017, pp. 1–9.

[Online]. Available: http://dl.ifip.org/db/conf/networking/networking2017/1570334752.pdf

[24] S. Holmer, H. Lundin, G. Carlucci, L. D. Cicco, and S. Mascolo, “A Google Congestion Control

Algorithm for Real-Time Communication,” Internet Engineering Task Force, Internet-Draft

draft-ietf-rmcat-gcc-02, Jul. 2016, work in Progress. [Online]. Available: https://datatracker.ietf.

org/doc/html/draft-ietf-rmcat-gcc-02

[25] I. Johansson and Z. Sarker, “Self-Clocked Rate Adaptation for Multimedia,” RFC 8298

(Experimental), RFC Editor, Fremont, CA, USA, pp. 1–36, Dec. 2017. [Online]. Available:

https://www.rfc-editor.org/rfc/rfc8298.txt

[26] D. D. Kashif Munir, Michael Welzl, “Linux beats windows! - or the worrying evolution of TCP in

common operating systems,” in Proceedings of the International Workshop on Protocols for Fast

64 of 77 Project no. 644334

https://www.rfc-editor.org/rfc/rfc8304.txt
https://tools.ietf.org/html/draft-fairhurst-taps-neat
https://www.neat-project.org/publications/
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-datagram-plpmtud-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-datagram-plpmtud-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-datagram-plpmtud-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-datagram-plpmtud-01.txt
https://www.rfc-editor.org/rfc/rfc8095.txt
https://www.rfc-editor.org/rfc/rfc8095.txt
https://tools.ietf.org/html/draft-grinnemo-taps-he
http://doi.acm.org/10.1145/1400097.1400105
http://doi.acm.org/10.1145/1400097.1400105
http://dl.ifip.org/db/conf/networking/networking2017/1570334752.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-gcc-02
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-gcc-02
https://www.rfc-editor.org/rfc/rfc8298.txt

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Long-Distance Networks (PFLDnet ’07). Marina Del Rey (Los Angeles), California, USA: ENS

Lyon, February 2007, pp. 43–48. [Online]. Available: http://www.welzl.at/research/publications/

pfldnet2007.pdf

[27] N. Khademi, G. Armitage, M. Welzl, S. Zander, G. Fairhurst, and D. Ros, “Alternative backoff:

Achieving low latency and high throughput with ECN and AQM,” in IFIP Networking 2017 Con-

ference and Workshops (Networking’2017), Stockholm, Sweden, Jun. 2017.

[28] N. Khademi, Z. Bozakov, A. Brunstrom, O. Dale, D. Damjanovic, K. R. Evensen, G. Fairhurst,

A. Fischer, K.-J. Grinnemo, T. Jones, S. Mangiante, A. Petlund, D. Ros, I. Rüngeler,

D. Stenberg, M. Tüxen, F. Weinrank, and M. Welzl, “Final Version of Core Transport

System,” NEAT Project (H2020-ICT-05-2014), Deliverable D2.3, Aug. 2017. [Online]. Available:

https://www.neat-project.org/publications/

[29] D. J. Leith, R. N. Shorten, G. Mccullagh, L. Dunn, and F. Baker, “Making available base-RTT for

use in congestion control applications,” IEEE Communications Letters, vol. 12, no. 6, pp. 429–431,

Jun. 2008.

[30] J. Lemon, “Kqueue – a generic and scalable event notification facility,” in Proceedings of the

FREENIX Track: 2001 USENIX Annual Technical Conference, 2001, pp. 141–153.

[31] D. Papadimitriou (Ed.), M. Welzl, M. Scharf, and B. Briscoe, “Open Research Issues in Internet

Congestion Control,” RFC 6077 (Informational), RFC Editor, Fremont, CA, USA, pp. 1–51, Feb.

2011. [Online]. Available: https://www.rfc-editor.org/rfc/rfc6077.txt

[32] G. Papastergiou, K.-J. Grinnemo, A. Brunstrom, D. Ros, M. Tüxen, N. Khademi, and P. Hurtig, “On

the cost of using Happy Eyeballs for transport protocol selection,” in Applied Networking Research

Workshop (ANRW), Berlin, Jul. 2016.

[33] T. Pauly, C. Perkins, K. Rose, and C. A. Wood, “A Survey of Transport Security Proto-

cols,” Internet Engineering Task Force, Internet-Draft draft-pauly-taps-transport-security-02,

Mar. 2018, work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/

draft-pauly-taps-transport-security-02

[34] T. Pauly (Ed.), B. Trammell (Ed.), A. Brunstrom, G. Fairhurst, C. Perkins, P. Tiesel, and C. Wood,

“An architecture for transport services,” Internet Draft draft-pauly-taps-arch, work in progress,

Feb. 2018. [Online]. Available: https://tools.ietf.org/html/draft-pauly-taps-arch

[35] P. Pfister, E. Vyncke, T. Pauly, and D. Schinazi, “Discovering provisioning do-

main names and data,” Working Draft, IETF Secretariat, Internet-Draft draft-

ietf-intarea-provisioning-domains-01, February 2018, http://www.ietf.org/internet-drafts/

draft-ietf-intarea-provisioning-domains-01.txt. [Online]. Available: http://www.ietf.org/

internet-drafts/draft-ietf-intarea-provisioning-domains-01.txt

[36] D. Ros and M. Welzl, “Less-than-best-effort service: A survey of end-to-end approaches,” Com-

munications Surveys Tutorials, IEEE, vol. 15, no. 2, pp. 898–908, 2013.

[37] B. Trammell (Ed.), M. Welzl (Ed.), T. Enghardt, G. Fairhurst, M. Kuehlewind, C. Perkins,

P. Tiesel, and C. Wood, “An abstract Application Layer Interface to transport services,”

Internet Draft draft-trammell-taps-interface, work in progress, Mar. 2018. [Online]. Available:

https://tools.ietf.org/html/draft-trammell-taps-interface

65 of 77 Project no. 644334

http://www.welzl.at/research/publications/pfldnet2007.pdf
http://www.welzl.at/research/publications/pfldnet2007.pdf
https://www.neat-project.org/publications/
https://www.rfc-editor.org/rfc/rfc6077.txt
https://datatracker.ietf.org/doc/html/draft-pauly-taps-transport-security-02
https://datatracker.ietf.org/doc/html/draft-pauly-taps-transport-security-02
https://tools.ietf.org/html/draft-pauly-taps-arch
http://www.ietf.org/internet-drafts/draft-ietf-intarea-provisioning-domains-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-intarea-provisioning-domains-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-intarea-provisioning-domains-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-intarea-provisioning-domains-01.txt
https://tools.ietf.org/html/draft-trammell-taps-interface

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

[38] M. Welzl and S. Gjessing, “A minimal set of transport services for TAPS systems,” Internet Draft

draft-ietf-taps-minset, work in progress, Feb. 2018. [Online]. Available: https://tools.ietf.org/

html/draft-ietf-taps-minset

[39] M. Welzl, M. Tuexen, and N. Khademi, “On the Usage of Transport Features Provided by IETF

Transport Protocols,” RFC 8303 (Informational), RFC Editor, Fremont, CA, USA, pp. 1–56, Feb.

2018. [Online]. Available: https://www.rfc-editor.org/rfc/rfc8303.txt

[40] P. Wette and H. Karl, “DCT2Gen: A versatile TCP traffic generator for data centers,”

https://www-old.cs.uni-paderborn.de/fachgebiete/fachgebiet-rechnernetze/people/

dr-philip-wette/dct2gen.html, 2014.

[41] J. Y. Yen, “Finding the k shortest loopless paths in a network,” management Science, vol. 17, no. 11,

pp. 712–716, 1971.

[42] X. Zhu, R. Pan, D. M. A. Ramalho, S. M. de la Cruz, P. Jones, J. Fu, and S. D’Aronco,

“NADA: A Unified Congestion Control Scheme for Real-Time Media,” Internet Engineering Task

Force, Internet-Draft draft-ietf-rmcat-nada-06, Dec. 2017, work in Progress. [Online]. Available:

https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-nada-06

66 of 77 Project no. 644334

https://tools.ietf.org/html/draft-ietf-taps-minset
https://tools.ietf.org/html/draft-ietf-taps-minset
https://www.rfc-editor.org/rfc/rfc8303.txt
https://www-old.cs.uni-paderborn.de/fachgebiete/fachgebiet-rechnernetze/people/dr-philip-wette/dct2gen.html
https://www-old.cs.uni-paderborn.de/fachgebiete/fachgebiet-rechnernetze/people/dr-philip-wette/dct2gen.html
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-nada-06

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

A NEAT Terminology

This appendix defines terminology used to describe NEAT. These terms are used throughout this doc-

ument.

Application An entity (program or protocol module) that uses the transport layer for end-to-end de-

livery of data across the network (this may also be an upper layer protocol or tunnel encapsula-

tion). In NEAT, the application data is communicated across the network using the NEAT User

API either directly, or via middleware or a NEAT Application Support API on top of the NEAT User

API.

Characteristics Information Base (CIB) The entity where path information and other collected data

from the NEAT System is stored for access via the NEAT Policy Manager.

NEAT API Framework A callback-based API in NEAT. Once the NEAT base structure has started, using

this framework an application can request a connection (create NEAT Flow), communicate over

it (write data to the NEAT Flow and read received data from the NEAT Flow) and register callback

functions that will be executed upon the occurrence of certain events.

NEAT Application Support Module Example code and/or libraries that provide a more abstract way

for an application to use the NEAT User API. This could include methods to directly support a

middleware library or an interface to emulate the traditional Socket API.

NEAT Component An implementation of a feature within the NEAT System. An example is a “Happy

Eyeballs” component to provide Transport Service selection. Components are designed to be

portable (e.g. platform-independent).

NEAT Diagnostics and Statistics Interface An interface to the NEAT System to access information

about the operation and/or performance of system components, and to return endpoint statis-

tics for NEAT Flows.

NEAT Flow A flow of protocol data units sent via the NEAT User API. For a connection-oriented flow,

this consists of the PDUs related to a specific connection.

NEAT Flow Endpoint The NEAT Flow Endpoint is a NEAT structure that has a similar role to the Trans-

mission Control Block (TCB) in the context of TCP. This is mainly used by the NEAT Logic to

collect the information about a NEAT Flow.

NEAT Framework The Framework components include supporting code and data structures needed

to implement the NEAT User Module. They call other components to perform the functions

required to select and realise a Transport Service. The NEAT User API is an important component

of the NEAT Framework; other components include diagnostics and measurement.

NEAT Logic The NEAT Logic is at the core of the NEAT System as part of the NEAT Framework com-

ponents and is responsible for providing functionalities behind the NEAT User API.

NEAT Policy Manager Part of the NEAT User Module responsible for the policies used for service se-

lection. The Policy Manager is accessed via the (user-space) Policy Interface, portable across

platforms. An implementation of the NEAT Policy Manager may optionally also interface to ker-

nel functions or implement new functions within the kernel (e.g. relating to information about

a specific network interface or protocols).

67 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

NEAT Selection Selection components are responsible for choosing an appropriate transport end-

point and a set of transport components to create a Transport Service Instantiation. This utilises

information passed through the NEAT User API, and combines this with inputs from the NEAT

Policy Manager to identify candidate services and test the suitability of the candidates to make a

final selection.

NEAT Signalling and Handover Signalling and Handover components enable optional interaction

with remote endpoints and network devices to signal the service requested by a NEAT Flow, or to

interpret signalling messages concerning network or endpoint capabilities for a Transport Ser-

vice Instantiation.

NEAT System The NEAT System includes all user-space and kernel-space components needed to re-

alise application communication across the network. This includes all of the NEAT User Module,

and the NEAT Application Support Module.

NEAT User API The API to the NEAT User Module through which application data is exchanged. This

offers Transport Services similar to those offered by the Socket API, but using an event-driven

style of interaction. The NEAT User API provides the necessary information to allow the NEAT

User Module to select an appropriate Transport Service. This is part of the NEAT Framework

group of components.

NEAT User Module The set of all components necessary to realise a Transport Service provided by

the NEAT System. The NEAT User Module is implemented in user space and is designed to be

portable across platforms. It has five main groupings of components: Selection, Policy (i.e. the

Policy Manager and its related information bases and default values), Transport, Signalling and

Handover, and the NEAT Framework. The NEAT User Module is a subset of a NEAT System.

Policy Information Base (PIB) The rules used by the NEAT Policy Manager to guide the selection of

the Transport Service Instantiation.

Policy Interface (PI) The interface to allow querying of the NEAT Policy Manager.

Stream A set of data blocks that logically belong together, such that uniform network treatment would

be desirable for them. A stream is bound to a NEAT Flow. A NEAT Flow contains one or more

streams.

Transport Address A transport address is defined by a network-layer address, a transport-layer pro-

tocol, and a transport-layer port number.

Transport Feature Short for Transport Service Feature.

Transport Service A set of end-to-end features provided to users, without an association to any given

framing protocol, which provides a complete service to an application. The desire to use a spe-

cific feature is indicated through the NEAT User API.

Transport Service Feature A specific end-to-end feature that the transport layer provides to an appli-

cation. Examples include confidentiality, reliable delivery, ordered delivery and message-versus-

stream orientation.

68 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Transport Service Instantiation An arrangement of one or more transport protocols with a selected

set of features and configuration parameters that implements a single Transport Service. Exam-

ples include: a protocol stack to support TCP, UDP, or SCTP over UDP with the partial reliability

option.

69 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

B SDN controller policies for handling elephant flows

1 {

2 "uid": "elephant_tag",

3 "filename": "elephant_tag.policy",

4 "policy_type": "policy",

5 "match": {

6 "flow_size_bytes": {

7 "value": {

8 "start": 10000000.0,

9 "end": "Inf"

10 }

11 }

12 },

13 "priority": 2,

14 "properties": [

15 { "elephant_flow": {

16 "precedence": 2,

17 "value": true

18 }

19 }

20],

21 "replace_matched": false,

22 "time": 1493307808.030206

23 }

Listing 6: Controller generated NEAT policy for tagging elephant flows based on flow size.

1 {

2 "uid": "elephant_handle",

3 "filename": "elephant_handle.policy",

4 "policy_type": "policy",

5 "match": {

6 "elephant_flow": { "value": true }

7 }

8 },

9 "priority": 10,

10 "properties": [

11 { "transport": {

12 "precedence": 2,

13 "value": "MPTCP"

14 },

15 "transport_cc": {

16 "precedence": 2,

17 "value": "olia"

18 },

70 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

19 "SO/IPPROTO_IP/IP_TOS": {

20 "precedence": 2,

21 "value": 40

22 }

23 }

24],

25 "replace_matched": false,

26 "time": 1493307808.030206

27 }

Listing 7: NEAT policy for handling flows tagged as “elephant flows”.

71 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

C How to build and test NEAT applications in MONROE

In the following, we explain how to create a MONROE experiment that can be deployed and run on

MONROE nodes that include the NEAT library, making it possible for the experiment to call NEAT API

functions. We provide a practical step-by-step example on how to create, test and deploy a NEAT-

enabled experiment. The code of our example is available in the neat-monroe git repository, at: https:

//github.com/NEAT-project/neat-monroe/tree/master/monroe-experiments/neat_test. We also de-

scribe the metadata information gathered by MONROE nodes for all available network connections

and how this information is made available for experiments and for the NEAT Policy Manager (PM).

C.1 Creating NEAT-enabled MONROE experiments

First, you need to install Docker on your machine. The MONROE Platform User Manual recommends

installing Docker via an installation script downloaded from the Docker webpage:

wget https://get.docker.com -O install.sh

chmod u+x install.sh

./install.sh

Test your installation, e.g., with Docker’s hello-world example:

docker run hello-world

Next, download the MONROE base image for an experiment template. The MONROE toolkit for

creating experiment images is available from MONROE’s GitHub repository. Clone the project with

the following command:

git clone https://github.com/MONROE-PROJECT/Experiments.git

Use the template folder located in the experiments folder as a base for your image. Copy the

folder and save it under your experiment’s name:

cd Experiments/experiments/

cp -r template neat_test

Rename dockerfile template.docker to match the experiment’s folder name:

cd neat_test

mv template.docker neat_test.docker

Once your experiment has been prepared, you will need to upload the image to your dockerhub

repository to make it available for MONROE certification and deployment. Edit the push.sh bash

script to point Docker to your experiment’s dockerhub repository by editing the corresponding line:

CONTAINERTAG=neatuser/neat

Next, you need to prepare your experiment binaries. Our example of experiment is built upon

a simple HTTP client application (neat_http_get) that downloads a file from a specified URL us-

ing the NEAT User API. In our experiment we invoke the script neat_http_get periodically and

we record and store the download time as a result. The source code of neat_http_get is avail-

able in the neat-monroe git repository: https://github.com/NEAT-project/neat-monroe/tree/master/

neat-http-get. It uses cmake to build and package the application into a .deb file. Compilation of the

tool itself is very straightforward, but we need two things to be considered beforehand. First, as already

72 of 77 Project no. 644334

https://github.com/NEAT-project/neat-monroe/tree/master/monroe-experiments/neat_test
https://github.com/NEAT-project/neat-monroe/tree/master/monroe-experiments/neat_test
https://github.com/NEAT-project/neat-monroe/tree/master/neat-http-get
https://github.com/NEAT-project/neat-monroe/tree/master/neat-http-get

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

mentioned, MONROE containers are based on Debian Jessie, so we need to cross compile the appli-

cation against Debian Jessie. Second, we need the NEAT library to be installed on our development

machine.

As a universal solution we can employ a temporary Docker container as a build environment:

cd neat-http-get

sudo docker pull monroe/base

sudo docker run -v ${PWD}:/mnt -ti monroe/base bash

Then (inside the container) prepare the build environment:

echo "deb http://ftp.debian.org/debian jessie-backports main" >> /etc/apt/sources.

list

apt-get update

apt-get install -y -t jessie-backports git vim build-essential cmake

Build and install the NEAT library:

apt-get install -y -t jessie-backports libuv1-dev libldns-dev libmnl-dev libjansson-

dev libsctp-dev libssl-dev

cd /root/

git clone https://github.com/NEAT-project/neat.git

cd neat/

mkdir build

cd build/

cmake ..

make

make install

Build and package neat_http_get:

cd /mnt/

mkdir build

cd build/

cmake ..

make

make package

and exit the container.

The resulting package (neat-http-get_1.0.0_amd64.deb) must be copied to the experiment’s

files directory:

cp build/neat-http-get_1.0.0_amd64.deb ../monroe-experiments/neat_test/files/

Our experiment script (neat_experiment.sh) looks as follows:

#!/bin/bash

Run experiment

CMD="/usr/bin/neat_http_get -v 1 celerway.com"

while true; do

DATE=‘date +%Y%m%d-%H%M%S.%N‘

73 of 77 Project no. 644334

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

FNAME=/monroe/results/neat_test-${DATE}.txt

TMP_FNAME=/tmp/neat_test-${DATE}.txt

echo -n "/usr/bin/time -f ’TIME-SEC: %e’ ${CMD} 1>/dev/null 2> ${FNAME} ..."

/usr/bin/time -f ’TIME-SEC: %e’ ${CMD} 1>/dev/null 2> ${TMP_FNAME}

mv $TMP_FNAME $FNAME

echo " DONE"

sleep 15

done

It also must be placed in the monroe-experiments/neat_test/files/ directory. Once the

experiment binaries and scripts are ready, we can start creating the experiment’s Docker image. Ev-

erything we want to install and/or configure in the image must be specified in the image dockerfile,

neat_test.docker in our example. The interested reader is referred to the Docker documenta-

tion (https://docs.docker.com/engine/reference/builder/) for dockerfile syntax and supported com-

mands. In order to support the NEAT library, the following sections need to be specified in the dock-

erfile.

Base our image on MONROE base container:

FROM monroe/base

Add yourself as a maintainer of the image:

MAINTAINER name@email.com

Presently, the MONROE base image is built on top of Debian Jessie. In order to support the NEAT

library — which relies on some newer packages not available in the stable Jessie repository — we need

to add the jessie-backport repository to apt/sources.list in our image:

RUN echo "deb http://ftp.debian.org/debian jessie-backports main" >> /etc/apt/

sources.list

Install the necessary Debian packages required to build and run the NEAT library:

RUN apt-get update && apt-get install -y \

git \

time \

build-essential \

cmake \

libuv1-dev \

libldns-dev \

libjansson-dev \

libmnl-dev \

libsctp-dev \

libssl-dev \

zlib1g-dev \

libbz2-dev \

libreadline-dev \

libsqlite3-dev \

llvm \

libncurses5-dev \

74 of 77 Project no. 644334

https://docs.docker.com/engine/reference/builder/

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

libncursesw5-dev \

xz-utils \

tk-dev \

&& apt-get clean

Install the Python version required by NEAT components (e.g., by the Policy Manager):

WORKDIR /opt/celerway

RUN wget https://www.python.org/ftp/python/3.5.2/Python-3.5.2.tgz

RUN tar xvf Python-3.5.2.tgz

RUN cd Python-3.5.2 && ./configure --enable-optimizations && make -j8 && make

altinstall

Install Python packages required by the Policy Manager:

RUN pip3.5 install netifaces && pip3.5 install aiohttp

Download, build and install NEAT project itself:

WORKDIR /opt/celerway

RUN git clone https://github.com/NEAT-project/neat.git

WORKDIR /opt/celerway/neat/build

RUN cmake .. && cmake --build . && make install

And finally, copy experiment binaries, install them and create the experiment entry point:

COPY files/* /opt/celerway/

WORKDIR /opt/celerway

RUN dpkg -i neat-http-get_1.0.0_amd64.deb

ENTRYPOINT ["dumb-init", "--", "/bin/bash", "/opt/celerway/neat_experiment.sh"]

The experiment script neat_experiment.sh is launched when the container starts.

Now you are ready to test and deploy your experiment. The procedure for testing, approval, certi-

fication and deployment for NEAT-enabled experiments is exactly the same as for any other MONROE

experiment and is described in detail in the MONROE Platform User Manual 7. It is worth mentioning

that the preliminary test of the image can be done locally on your own machine, e.g., by running the

following commands:

sudo docker run -v /run/shm/myresults:/monroe/results neatuser/neat

And to access the container via bash console:

sudo docker ps //-> to get [CONTAINER_ID]

sudo docker exec -i -t [CONTAINER_ID] bash

C.2 MONROE metadata, Policy Manager and CIB

The MONROE platform gathers metadata information about each network connection. It makes the

metadata available to the experiments by means of ZMQ8. Celerway’s neat-metadata-exporter is

a CIB properties provider intended to run inside the experiment’s container. It listens for messages

coming from a MONROE node on the ZMQ socket, filters and translates the messages to the format

expected by NEAT CIB database and forwards them via a Unix socket to the Policy Manager.

7https://github.com/MONROE-PROJECT/UserManual
8http://zeromq.org

75 of 77 Project no. 644334

https://github.com/MONROE-PROJECT/UserManual
http://zeromq.org

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Table 2 (in § 2.1) shows the metadata properties that are currently supported.

The description of the properties and their possible values can be found in the data-exporter

README, at: https://github.com/NEAT-project/data-exporter/blob/master/README.md. In order

to run the Policy Manager and neat-metadata-exporter in the experiment’s container the follow-

ing steps are required.

Add the following lines to the dockerfile:

RUN apt-get update && apt-get install -y \

libzmq3-dev \

libjsoncpp-dev \

&& apt-get clean

WORKDIR /opt/celerway

RUN git clone https://github.com/NEAT-project/neat-monroe.git

WORKDIR /opt/celerway/neat-monroe/metadata-exporter/src/build

RUN cmake .. && make && make install

Then, start the Policy Manager and neat-metadata-exporter. Both PM and

neat-metadata-exporter daemons need to be running before the experiment starts. For our tuto-

rial we can simply modify theneat_experiment.sh script to add the following lines at the beginning

of the script:

Start policy manager

mkdir -p /var/run/neat/cib/

mkdir -p /var/run/neat/pib/

python3.5 /opt/celerway/neat/policy/neatpmd --sock /var/run/neat/ --cib /var/run/

neat/cib/ --pib /var/run/neat/pib/ &

Start neat metadata exporter

neat-metadata-exporter --cib-socket /var/run/neat/neat_cib_socket &

For the sake of simplicity our example has not optimised the container size. To reduce the final

image size all intermediate files should be stripped from the image. Additionally, each command in the

dockerfile creates a file system layer that is then downloaded and applied sequentially when preparing

the experiment container on the nodes. Therefore, the number of steps in the dockerfile should be

kept to a minimum, by combining multiple instructions into a single docker command. Also, instead

of installing dev packages and building software inside the container, we should install binaries or

packages directly. Please refer to the MONROE Platform User Manual for additional tips for image

optimisation.

76 of 77 Project no. 644334

https://github.com/NEAT-project/data-exporter/blob/master/README.md

D4.3
Validation and evaluation results

Public
Rev. 1.0/ May 2, 2018

Disclaimer

The views expressed in this document are solely those of the author(s). The European Com-

mission is not responsible for any use that may be made of the information it contains.

All information in this document is provided “as is”, and no guarantee or warranty is given

that the information is fit for any particular purpose. The user thereof uses the information

at its sole risk and liability.

77 of 77 Project no. 644334

	List of Abbreviations
	Introduction
	Experimental results
	Celerway use case
	Test topology
	Test implementation
	Results
	Key findings and implications

	Cisco use case
	Test topology
	Test implementation
	Results
	Key findings and implications

	Mozilla use case
	Test topology
	Test implementation
	Results
	Key findings and implications

	EMC use case
	Test topology
	Test implementation
	Results
	Key findings and implications

	The future of NEAT
	Scalability
	Towards more aggressive protocols?
	Why is there a need for choice?
	Local scalability

	Evolution towards a standard API with implementation guidance

	Conclusions
	References
	NEAT Terminology
	SDN controller policies for handling elephant flows
	How to build and test NEAT applications in MONROE
	Creating NEAT-enabled MONROE experiments
	MONROE metadata, Policy Manager and CIB

