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Abstract

NEAT has identified application requirements and associated NEAT service components

from use cases in Task 1.1. To fulfill these requirements, the NEAT System must provide cer-

tain services, and the NEAT API must contain a set of primitives and events that allow ap-

plications to use these services. Because NEAT makes use of the functionality of transport

protocols without statically binding them to applications, the NEAT API must also provide

(generic) access to the features of the transport protocols that NEAT uses. This document

presents generic API primitives and events that map to features of TCP and SCTP, as well as

primitives, events and services that relate to NEAT’s use cases.
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Note

This is a public release of work-in-progress describing the initial release of the NEAT Services and APIs.

This document is expected to be re-issued in electronic form as the specification is updated and will

finally be replaced by the project deliverable D1.3 “Final version of services and APIs”.

Planned functionality to be added in future versions includes:

• Changes to Primitives and Events for UDP and UDP-Lite.

• Primitives and Events that appear in extensions to SCTP.

• Support for automating use of multi-streaming.

• Support for functionality akin to Fast Open for TCP and SCTP.

• Other updates to the API based on experience using the NEAT System.
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Figure 1: The groups of components and external interfaces used to realise the NEAT User Module.
The NEAT User Module utilises the lower interface provided by a Kernel Programming Interface (KPI),
the traditional Socket API or an optional NEAT Socket API.

1 Introduction

The NEAT System is designed to offer a flexible and evolvable transport system. Applications interface

to the NEAT System through an enhanced API that effectively decouples them from the operation of

the transport protocols and the network features being used. In particular, applications provide the

NEAT System with information about their traffic requirements. Then, on the basis of these require-

ments, pre-specified policies, and measured network conditions, NEAT establishes and configures

appropriate connections.

This document describes services that the NEAT System will provide together with the API that

is offered to the applications using the NEAT System. It specifies the primitives of the upper layer

interface of the NEAT User Module1. This API, known as the NEAT User API, offers services that are

similar to those offered by the traditional socket API, but with the additional benefit that applications

can provide parameters (properties) to allow each application to describe the service needed. The

NEAT System may then use pre-specified policies to instantiate the required Transport Service.

Figure 1, taken from Deliverable D1.1 [7] shows the placement of the NEAT User API in the NEAT

System. The main five NEAT System Component groupings (depicted as ovals) support the func-

tionality provided by NEAT through the NEAT User API. Some of the functionality is quite directly

reflected in the API, but much is automatised, and such automatisation can be done better using the

rich information—richer than with the Berkeley socket API—that applications provide via the NEAT

User API. This automatisation is enabled by extending the Internet’s “best effort” service model all the

way up to the application [11]: because not many “promises” are made, many possible choices are

available for the NEAT system to satisfy application demands. This ability to automatise is enabled by

the core idea behind all of NEAT’s design, i.e., decoupling applications from the choice of a particular

transport protocol.

NEAT works very closely with the Transport Services (TAPS) Working Group in the IETF2. As such,

most of the documents in TAPS have authors from NEAT and NEAT’s design is closely tied to work hap-

pening in TAPS. The NEAT Transport Services have been defined as a set of Transport Service Features

that can be provided by a transport protocol [5]. Examples of Transport Service Features are: reliable

delivery, ordered delivery, content privacy to in-path devices, and integrity protection. By zooming

into a greater level of detail on what NEAT offers, this document is concerned with these Transport

1For more details about NEAT-specific terminology, please refer to Appendix A.
2http://tools.ietf.org/wg/taps/; this working group was chartered prior to NEAT following initiatives from several NEAT par-

ticipants, such as Birds of a Feather (BoF) meetings and one Internet Draft predating the creation of the group [12].

9 of 76 Project no. 644334

http://tools.ietf.org/wg/taps/


D1.2
First Version of Services and APIs

Public
Rev. 1.0/ March 1, 2016

Service Features rather than the compound Transport Services offered by transport protocols.

The NEAT User API has been designed in accordance with:

• The Transport Service Features provided by TCP and SCTP, as outlined in draft-ietf-taps-transports-

usage [21] (Appendix C).

• The application requirements that were derived from the NEAT use cases in D1.1.

• The architectural design of the NEAT System, which is outlined in D1.1.

• The state-of-the-art, as outlined in the paper [13] included in Appendix B, specifically section IV

of the paper (which discusses APIs).

The functionality provided by the NEAT User API is based upon two inputs:

• The functionality of the transport protocols that the NEAT System uses; in the current version

these are TCP and SCTP3.

• The application requirements that were derived from the use cases in D1.1.

The functionality of TCP and SCTP has been summarised in the form of API primitives and events

in draft-ietf-taps-transports-usage [21], which provides the input for the first part of the NEAT API.

The functionality that is necessary to fulfill the application requirements from the use cases in D1.1 is

being implemented by NEAT; the Transport Service Features presented in Section 2.2 of this document

(Tables 1 and 2) that are a part of the low-level Core Transport System are associated to Components

in Deliverable D2.1 [9].

Figure 2 gives a high-level view of how the API is derived from the use cases and draft-ietf-taps-

transports-usage [21], respectively. It shows the roles of draft-ietf-taps-transports-usage [21] as well

as Deliverables D1.1 and D1.2 in this process: starting from two different sources, we arrive at one

common abstract API definition in this document.

Section 2 presents the Transport Service Features that form the basis for API primitives and events

in Section 3. The Transport Service Features from draft-ietf-taps-transports-usage [21] are already

presented in the Internet-draft (included in full in Appendix C), and hence only a brief overview of

this draft is given in § 2.1. The Transport Service Features that are associated with the use cases in

D1.1 were developed as part of Tasks 1.1 and 1.3, and are summarised in § 2.2. In Section 3, after a

brief overview of the general API structure and its envisioned usage (§ 3.1), the elements of the API are

presented, separating the basic API elements (§ 3.2) from those stemming from the use cases (§ 3.3).

Section 4 concludes by outlining planned functionality to be added in the next version of the API (to

be reported in Deliverable D1.3).

2 Services provided by NEAT

NEAT services consist of elements that we call “Transport Service Features”, in line with the NEAT

terminology and following the terms defined in [5]. Because Transport Service Features are the major

concern for API design, these are at the centre of interest in the remainder of this document.

3For the moment, SCTP as defined in RFC 4960 [18] only; protocol extensions or alternate APIs such as RFC 6458 [19] will be
covered in Deliverable D1.3, “Final Version of Services and APIs”.
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Figure 2: The process of deriving the API from draft-ietf-taps-transports-usage [21] and from NEAT’s
use cases.

2.1 Transport Service Features from draft-ietf-taps-transports-usage [21]

The Internet Draft draft-ietf-taps-transports-usage [21], written by NEAT participants as part of

Task 1.3, derives Transport Services and Transport Service Features provided by transport protocols

through an investigation of the IETF RFCs defining these. This method gives a reasonable overview of

functionality that is available in most implementations that try to conform to the specification.

The draft follows a three-pass procedure: first, the relevant text pieces of RFCs are identified. Sec-

ond, the draft presents the primitives and events that are exposed to applications as a means to utilise

a protocol’s Transport Service Features. Third, an overview of all Transport Service Features is derived,

to capture the complete set of Transport Service Features even when some of them are not exposed in

the API of a particular protocol because they are static properties of the protocol. For example, conges-

tion control is a static property of TCP and SCTP which only stands out as a Transport Service Feature

in conjunction with protocols such as UDP which do not support it. The TAPS Working Group has

accepted draft-ietf-taps-transports-usage [21] with its three-pass method as a Working Group item.

For this document, the most relevant step in the procedure is pass 2. Here we have primitives and

events together with some information about parameters and usage. The most important difference

between the primitives in draft-ietf-taps-transports-usage [21] and the ones presented in Section 3.2 of

this document is that the latter lack a transport protocol in their name—they are generic, allowing the

NEAT System to make an automatic choice of the most suitable transport protocol given the policies,

environment conditions and requests from the application.

2.2 Transport Service Features from Use Cases in D1.1 [7]

The NEAT consortium has identified a number of Transport Service Features that the NEAT System

must provide in order to fulfil the application requirements associated with the NEAT use cases, pre-

sented in Deliverable D1.1.

Some Transport Service Features can be associated with an information flow from the NEAT System

to the application, whereas others match an information flow in the other direction. Tables 1 and 2
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Table 1: Information flow from NEAT to the application.

Use case Requirement Transport Service Fea-
tures

Comments

EMC Method to determine the
transport selected and
transport parameters

NEAT selected trans-
port protocol;
NEAT transport param-
eters

Choice of SCTP, TCP, etc. as well as parameters used
(e.g. type of congestion control, TCP sysctl parame-
ters, . . . )

EMC Statistics from the network Interface statistics Useful for MIF host interface selection or delay im-
provements (interface MTU, addresses, connection
type (link layer), etc.)

Cisco;
EMC

Ability to monitor and trace
the performance over the
network path being used;
Latency, packet loss, ...,
statistics from the network

Path statistics Experienced RTT, packet loss (rate), jitter, through-
put, path MTU, etc.

Cisco Capacity hints Capacity/bandwidth
hints for application,
upspeeding informa-
tion

Comes either from the local NEAT endpoint or the
remote NEAT endpoint in conjunction with en-
abled flow metadata signalling (see Table 2); can
be boolean or a number (allowed rate in bit/s), de-
pending on what is available

Cisco Capacity hints Downspeeding infor-
mation

E.g., ECN marks passed to the application

present the Transport Service Features together with the use cases and requirements upon which they

are based, both in the “upwards” and “downwards” direction. The Requirement column uses text

that comes verbatim from D1.1; requirements separated by a semicolon correspond to the case when

requirements from two industry use cases are mapped to the same Transport Service Feature. Semi-

colons are also used to separate multiple Transport Service Features.

In Table 2, all rows can be interpreted as requests from the application to NEAT: the application

wishes to obtain something and asks the NEAT System for it. For the case where the application just

hands over information to the NEAT System so that it can better optimise its behaviour (or signal

the information into the network, such that other elements on the path can better optimise their be-

haviour), handing over the information is by itself a request, and all such requests are covered by the

NEAT flow metadata Transport Service Feature (sixth row in the table).

3 NEAT User API

There are two main approaches regarding the interaction between a NEAT application and the NEAT

User API to efficiently handle multiple concurrent connections (sockets): (1) the traditional approach

used by the socket API; (2) an event-driven socket approach known as callback. On the one hand,

with the traditional socket API, one can use e.g. poll to address the problem of handling multiple

concurrent connections, use fork to run a process per socket, or combine these functions (e.g., by

using multiple processes/threads that wrap poll or a process pool that file descriptors are passed

to). On the other hand, the user of a callback-based API hands over a function pointer, and this func-

tion is expected to be called back (executed) at some relevant time. In a callback-based program, the

readability/writability of a socket is returned using a registered callback function.

The NEAT System has chosen to implement the NEAT User API using callback-based functions,
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Table 2: Information flow from the application to NEAT.

Use case Requirement Transport Service Fea-
tures

Comments

Cisco Naming Connect to a name Application only provides a name, not an IP address

Celerway Network security Selection of a secure in-
terface

Boolean. E.g., avoid open WiFi

Celerway Desire for seamless han-
dover/mobility

NEAT flow seamless
handover

Boolean (default=false)

Celerway Robustness: continuous
stable Internet connectivity

Optimise for continu-
ous connectivity

Boolean; e.g., use LTE instead of a WiFi hotspot, use
“NEAT flow seamless handover”

EMC Disable dynamic enhance-
ment

NEAT flow disable dy-
namic enhancement

Boolean; this is about changing the behaviour of a
flow on-the-fly. It sets “NEAT flow seamless han-
dover” to false

Cisco;
Celerway;
EMC

Signal QoS-related and
non-QoS-related proper-
ties to the network;
Metadata about application

NEAT flow metadata Text (application type/name, flow length (size), du-
ration, etc)

Cisco Signal QoS-related and
non-QoS-related proper-
ties to the network

Flow metadata privacy Boolean per attribute (default=privacy) – signalling
via “STUN by DISCUSS” IETF draft or similar PCP
extensions; Choice of signalling can also be re-
quested by application (e.g. STUN, PCP, SPUD,..)

Celerway;
EMC

Delay budget;
Latency expected by the ap-
plication

NEAT flow delay budget In ms

Celerway;
EMC

Capacity requirements /
profile;
Capacity requested by the
application

NEAT flow capacity Application needs bit/s for the duration of t sec-
onds (only a hint, no guarantee)

Celerway Data delivery require-
ments, capacity require-
ments / profile

NEAT flow capacity
profile

LBE (LEDBAT), conservative (CAIA Delay Gradient
algorithm), normal (Reno), aggressive (Cubic)

Cisco;
Celerway

Low latency;
Data delivery requirements

NEAT flow low latency Boolean (default = false)

Cisco QoS NEAT flow DSCP sup-
port

Uses DiffServ code points (DSCP; in-network pri-
ority); (maybe) simplified set of DSCP provided by
NEAT

Cisco Per-message priority Per-message DSCP
support

Uses DSCP (in-network priority); (maybe) simpli-
fied set of DSCP provided by NEAT. No policy de-
cision here

Cisco Per-message priority Per-message priority Also provides per-message priority (e.g., priority for
video I-frames)—translates into send buffer policy,
network-based decisions (use “per-message DSCP
support”), etc.

Mozilla Flow coordination NEAT flow group Common congestion management (application
says which flows should have common congestion
control), e.g. for the sake of prioritisation between
flows

Mozilla Flow coordination NEAT flow priority Local Priority in a NEAT host

Mozilla API should provide multi-
streaming

Multi-streaming Just as in SCTP – for e.g. TCP, throw an error

Mozilla;
EMC

Transport security;
Security needs from the ap-
plication

NEAT flow security Parameters for (D)TLS, authentication, support
for opportunistic use of encryption and integrity
(TCPINC). Application says: “try if possible” or
“must use”
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because this approach is potentially faster and more scalable in terms of the number of concurrent

flows for interfaces between two user-land libraries. A callback approach is becoming the new norm,

and to NEAT-enable applications that use the traditional socket API (e.g., select or poll), a drop-in

“shim” library may be developed.

To assist application developers unfamiliar with the callback approach, simple applications will

be provided by NEAT developers as sample code that can use NEAT’s callback-based User API. In ad-

dition, developers who have already implemented existing libraries using callbacks do not need to

rewrite their applications to make NEAT callbacks happen (and the file descriptor created by the NEAT

System itself is pollable). In addition, most of today’s server-side applications are using the callback-

based approach, making this a suitable choice for deployment.

3.1 Overview

The NEAT System uses a context structure called neat_ctx. A NEAT programmer needs to create it

at the beginning of using the NEAT System (by calling NEAT_INIT_CTX,4 which returns this structure),

and destroy it when the application stops using the NEAT System (by calling NEAT_FREE_CTX, which

receives the context structure as an argument). To maintain the correct context, all NEAT functions

receive the context structure as an argument.

NEAT communication is inherently connection-oriented. A NEAT connection is called a “NEAT

flow” (neat_flow). This is handled similar to connections in traditional socket programming: it must

be created before usage, and destroyed after usage; once it has been created, it is possible to read from

a NEAT flow or write to it, and parameters can be adjusted during its existence. This is achieved by

using some of the primitives that are available (OPEN, ACCEPT, READ, WRITE, . . . ) and by registering

operations to be performed when certain conditions occur (callbacks). NEAT starts performing these

callbacks after its primitive NEAT_START_EVENT_LOOP is called. The neat_ctx and neat_flow data

structures also contain general status information that can be queried.

To summarise, working with the NEAT System requires the following steps:

1. Create the context structure.

2. Create a NEAT flow.

3. Register callback functions for handling events.

4. Start the event loop.

5. Call API primitives as needed.

6. Destroy the NEAT flow.

7. Destroy the context structure.

8. Stop the event loop.

Possible events (to be registered as callbacks in step 3 above) and primitives (step 5) are described

in §§ 3.2 and 3.3; this covers the communication functionality of the NEAT System. Following the

common style in IETF RFCs, these primitives and events are described in an abstract fashion, i.e., the

4The primitives NEAT_INIT_CTX, NEAT_FREE_CTX and NEAT_START_EVENT_LOOP are not described later in this document
because they do not map to either draft-ietf-taps-transports-usage [21] or Tables 1 and 2. They are not directly related to any
specific Transport Service Features.
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description is not bound to a specific programming language. The semantics associated with the API

primitives and events are fully described here; the final NEAT implementation may however differ

in syntax from this API. This can include coalescing or splitting primitives and events—for example,

instead of using multiple primitives to adjust properties of a NEAT flow, it would also be possible to

expose a single SET_PROPERTIES primitive that receives a large data structure containing all the pos-

sible elements to be adjusted. The best form is a matter of programming convenience (and one can

easily move from one to the other), but this does not change which communication capabilities are

made available to the programmer.

NEAT primitives and events are categorised into:

• Manipulating a NEAT flow: establishment (e.g., OPEN), availability (e.g., ACCEPT), maintenance

(e.g., CHANGE_TIMEOUT) and termination (e.g., CLOSE)

• Manipulating data (e.g., WRITE, READ, SEND_FAILURE).

All primitives/events are always associated with a particular NEAT context and flow, and the prim-

itives/events for manipulating data can only be used when a NEAT flow has been created.

3.1.1 Notation and presentation style

For simplicity, the NEAT context and flow parameters are not shown. The names of primitives and

events are shown in small caps: LIKE THIS. P: and E: indicate primitives and events, respectively. Their

parameters are shown in italics and optional parameters are shown in square brackets: [like this]. A

triangle (B) indicates the explanation of a primitive or event. A right-pointing arrow (→) indicates

comments that relate to how the API was derived, but are not a part of the actual API description.

3.2 API Primitives and Events from draft-ietf-taps-transports-usage [21]

The primitives and events in this subsection are based on pass 2 in [21], which lists primitives and

events per protocol and tries to present a coherent picture across multiple protocols. In the process

of moving from that list to generic API primitives and events, several minor design decisions needed

to be made. For example, TCP can be passed a timeout value when opening a connection, whereas

SCTP does not. Both protocols allow to adjust the timeout of an existing connection / association. The

decision, here, was to ignore the timeout parameter of TCP and only rely on the possibility to adjust

it later (i.e., an OPEN call can immediately be followed by a call to CHANGE_TIMEOUT by the NEAT

user to obtain an effect similar to using TCP’s timeout parameter when opening the flow). Similar

types of minor decisions were made everywhere, with the goal of sustaining all the functionality of the

protocols underneath the NEAT User API while presenting an API that is easy to use.

An effort was made to minimise protocol-specific behaviour, such as a primitive returning an er-

ror because the associated functionality is only available in SCTP or TCP, respectively. The following

primitives/events from [21] were not included:

• P: REQUESTHEARTBEAT: because this primitive only exists in SCTP and it was considered to not

be a very useful mechanism to expose.

• P: SETPROTOCOLPARAMETERS: because this primitive only exists in SCTP and allows to fine-tune

a number of protocol-specific parameters.
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• P: STATUS: because this functionality is already covered by the neat_ctx and neat_flow data

structures.

• P: DISABLE-NAGLE: because this functionality is automatically enabled/disabled depending on

the state of the NEAT flow low latency property (Table 2).

• P: CHANGE-DSCP: because this functionality is covered by the DSCP value property of the

neat_flow data structure.

Moreover, TCP allows to specify whether a specific User Timeout (UTO) value should be advertised

to the other side and whether an incoming UTO value should be accepted. This is an optimisation of

the API to help in particular cases, and we have not considered this as a part of this first specification.

3.2.1 NEAT Flow Establishment

Active creation of a NEAT flow from one transport endpoint to one or more transport endpoints.

P: OPEN( [localname] destname port [stream_count] )

localname : a NEAT-conformant name (which can be a DNS name or a set of IP addresses)

to specify which local addresses to use; if this is missing, NEAT will make a default choice.

destname : a NEAT-conformant name (which can be a DNS name or a set of IP addresses) to

connect to.

port : port number (integer) or service name (string) to connect to.

stream_count : the number of requested streams to open (integer). Default value: 1.

Returns: success or failure. If success, it also returns a handle for a NEAT flow.

B This actively opens a flow.

→ Names are used instead of IP addresses to comply with the Transport Service Feature Con-

nect to a name in Table 2. Failing when multi-streaming is not available is required by the

Transport Service Feature Multi-streaming in Table 2.

3.2.2 NEAT Flow Availability

Preparing to receive incoming communication requests.

P: ACCEPT( [name] port )

name : local NEAT-conformant name (which can be a DNS name or a set of IP addresses) to

constrain acceptance of incoming requests to local address(es). If this is missing, requests

may arrive at any local address.

port : local port number (integer) or service name (string), to constrain acceptance to in-

coming requests at this port.

Returns: one or more destination IP addresses, information about which destination IP

address is used by default, inbound stream count (= the outbound stream count that was

requested on the other side), and outbound stream count (= maximum number of allowed

outbound streams).

B This prepares a flow to accept communication from another NEAT endpoint.
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3.2.3 NEAT Flow Maintenance

Adjustments to be made to an open NEAT flow, or notifications concerning the NEAT flow. These are

out-of-band primitives / events that can be issued at any time after a NEAT flow has been opened and

before it has been terminated.

P: CHANGE_TIMEOUT( toval )

toval : the timeout value in seconds.

B This adjusts the time after which a NEAT flow will terminate if data could not be delivered. If

this is not called, NEAT will make an automatic default choice.

P: SET_PRIMARY( dst_IP_address )

dst_IP_address : the destination IP address that should be used as the primary address.

B This is meant to be used on NEAT flows having multiple destination IP addresses, with pro-

tocols that do not use load sharing. It should not have an effect otherwise. Note that, in case a

contradictory parameter is used when writing data, it will overrule this general per-flow setting.

If this is not called, the NEAT System will make an automatic default choice for the destination

IP address.

→ This is derived from SETPRIMARY.SCTP in [21].

E: NETWORK_STATUS_CHANGE( )

Returns: status code.

B This informs the application that something has happened in the network; it is safe to ig-

nore without harm by many applications. The status code indicates what has happened in

accordance with a table that includes at least the following three values: 1) ICMP error message

arrived; 2) Excessive retransmissions; 3) one or more destination IP address(es) have become

available/unavailable.

→ This is derived from ERROR.TCP and STATUS.SCTP (and therein, only NETWORK STATUS

CHANGE from pass 1) in [21]. ERROR.TCP informs about soft errors that can be ignored without

harm by many applications, including at least the notifications associated with values 1 and 2

of the status code. NETWORK STATUS CHANGE is an SCTP event that informs the user about

a destination IP address becoming available/unavailable (value 3). Together with TCP’s “soft

errors”, this is also called “safe to ignore without harm by many applications” because entire

communication breakage will eventually also cause a TIMEOUT event (§ 3.2.4).

3.2.4 NEAT Flow Termination

Gracefully or forcefully closing a NEAT flow, or being informed about this event happening.

P: CLOSE( )

BThis terminates a NEAT flow after satisfying all the requirements that were specified regarding

the delivery of data that the application has already given to NEAT.
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E: CLOSE( )

B This informs the application that a NEAT flow was successfully closed.

P: ABORT( )

B This terminates a connection without delivering remaining data and, if possible, sends an

abort reason to the other side.

E: ABORT( )

B This informs the application that the other side has aborted the NEAT flow.

E: TIMEOUT( )

B This informs the application that the NEAT flow is aborted because the default timeout, pos-

sibly adjusted by the CHANGE_TIMEOUT NEAT flow maintenance primitive (§ 3.2.3), has been

reached before data could be delivered.

3.2.5 Writing and reading data

All primitives in this section refer to an open NEAT flow, i.e., a NEAT flow that was either actively

established or successfully made available for receiving data. In addition to the listed parameters, all

sending primitives contain a reference to a data block and all receiving primitives contain a reference

to available buffer space for the data (both are omitted for readability).

P: WRITE( [stream] [context] [pr_method pr_value] [dst_IP_address] [unordered_flag]

[priority] )

stream : the number of the stream to be used. This can be omitted if the NEAT flow contains

only one stream.

context : a number that can possibly be used later to refer to the correct message when an

error is reported.

pr_method and pr_value : if these parameters are used, then pr_method must have an inte-

ger value from 1 to 2 to specify which method to implement partial reliability is requested.

Value 1 means: pr_value specifies a time in milliseconds after which it is unnecessary to

send this data block. Value 2 means: pr_value specifies a requested maximum number of

attempts to retransmit the data block.

dst_IP_address : the destination IP address of the path that should be preferred, if possible

and if there are multiple paths available (see also SET_PRIMARY, § 3.2.3).

unordered_flag : The data block may be delivered out-of-order if this flag is set. Default:

false.

priority : This defines a floating point priority value from 0.1 to 1 for the message within

the NEAT flow. The word “priority” here relates to a desired share of the capacity. It is rec-

ommended to send messages on different streams when they have different priorities. The

implementation of per-message priorities is local. The priority setting is purely advisory; no

guarantees are given. Default value: 0.5.
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B This gives NEAT a data block for reliable (possibly limited by the conditions specified via

pr_method and pr_value) transmission to the other side of the NEAT flow. NEAT flows can sup-

port message delineation as a property of the NEAT flow that is set via the INIT_FLOW primitive

(§ 3.3.1). If a NEAT flow supports message delineation, the data block is a complete message.

→ The priority parameter was not derived from [21] but introduced here to support the Trans-

port Service Feature Per-message priority in Table 2. According to [21], SCTP’s send call (which

many of the functions in this primitive were derived from) also has a no-bundle_flag param-

eter. This was removed here because there is no support for this per-message functionality in

the socket API [19]. SCTP’s send call also includes a payload protocol-id that is handed over

to the receiver side. This was removed because NEAT follows the common method of only us-

ing port numbers for multiplexing at that layer. There is an additional benefit of the payload

protocol-id in that it allows easier identification of packets inside the network; in NEAT, such

information is considered metadata and only signalled when allowed by the user (see properties

NEAT flow metadata and Flow metadata privacy, § 3.3.4). For partial reliability, [21] only spec-

ifies a “lifetime” parameter for SCTP, which RFC 7496 [20] extends to include the functionality

that is captured by the parameters [pr_method] and [pr_value], and which we have partially

adopted here (it will probably be included in a future version of [21] too).

P: READ( [stream] )

stream : a stream number; if this is provided, the call to receive only receives data on one

particular stream (else it receives on any stream).

Returns: [partial_flag p_sequence_number] [unordered_flag u_sequence_number]

If a partial message arrives, this is indicated by partial_flag, and then p_sequence_number

is provided such that an application can restore the correct order of data blocks that com-

prise an entire message. If message arrives out of order, this is indicated by

unordered_flag, and then u_sequence_number is provided such that an application can

restore the correct order of messages.

B This reads data from a NEAT flow into a provided buffer. NEAT flows can support message

delineation as a property of the NEAT flow that is set via the INIT_FLOW primitive. If a NEAT flow

supports message delineation, the data block is a complete message.

→ At the time of writing, the SCTP code did not provide the ability to read from a specific

stream—instead, it returns which stream was read from. This primitive therefore reflects func-

tionality of a planned update to the SCTP code. SCTP’s receive call also includes a payload

protocol-id. This was removed because NEAT follows the common method of only using port

numbers for multiplexing at that layer. There is an additional benefit of the payload protocol-id

in that it allows easier identification of packets inside the network; in NEAT, such information

is considered metadata and only signalled when allowed by the user (see properties NEAT flow

metadata and Flow metadata privacy, § 3.3.4).

E: SEND_FAILURE( )

Returns: cause_code [context] unsent_or_unacknowledged_msg

cause_code indicates the reason of the failure, and context is the context number if such

a number has been provided in WRITE. unsent_or_unacknowledged_msg is the message

that could not be delivered.
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→This is derived from SENDFAILURE-EVENT.SCTP in [21]. TCP does not have a corresponding

event.

3.3 API Primitives and Events from Transport Service Features in Tables 1 and 2

Section 3.1 explains that it does not matter to the functionality provided by NEAT whether the mech-

anisms are offered as many primitives with only a few parameters each, larger primitives spanning

many parameters, or only as properties of the neat_ctx and neat_flow data structures. A definite

decision regarding this aspect of NEAT design is not made in this document. In the previous section,

these syntactical decisions were guided by the way primitives and events are presented in [21] (which,

in turn, depends on how they are presented in the RFCs that [21] is based upon). For this section

however, no such guidance exists. The decisions were made based on the assumed system dynamics

underlying the Transport Service Features in Tables 1 and 2:

• Transport Service Features that require adjusting properties before a NEAT flow is opened are

presented as part of a special INIT_FLOW primitive (§ 3.3.1).

• Transport Service Features that require immediate action (or feedback) from NEAT are presented

as primitives (§ 3.3.2).

• Transport Service Features that require immediate action from the application are presented as

events (§ 3.3.3).

• All other Transport Service Features are presented as elements of the neat_ctx and neat_flow

data structures (§ 3.3.4).

This is just a method to present an abstract API; it does not mandate the final design of the reference

implementation that is under development by the NEAT consortium.

The following Transport Service Features from Tables 1 and 2 are already covered by primitives or

events in § 2.1:

• Connect to a name: covered by the OPEN and ACCEPT primitives.

• Per-message priority: covered by the priority parameter of the WRITE primitive.

• Multi-streaming: covered by the OPEN, WRITE and READ primitives.

3.3.1 Adjusting properties of a NEAT flow before it is opened

P: INIT_FLOW( [messages] [LL_secure_local_interface] [capacity_profile]

[security [certificate verification] [certificate] [key] [TLS/DTLS version] [cipher suites]] )

messages : this boolean parameter specifies whether message boundaries are preserved

(true) or not (false). Lack of message boundary preservation means that data are sent as

a byte stream.

LL_secure_local_interface : boolean to request selection of a local interface that provides

some form of link layer security (e.g., to avoid open WiFi networks).
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capacity_profile : one out of four values defining what kind of dynamic behaviour the NEAT

flow should have: 1) LBE (e.g., LEDBAT [17] congestion control), 2) conservative (e.g., CAIA

Delay Gradient congestion control [8]), 3) normal (e.g., TCP-friendly “Reno-like” [1] conges-

tion control), 4) aggressive (e.g., CUBIC [16] congestion control). This is purely advisory, if

one of these capacity profiles is requested but is not available, the system’s default behaviour

will be used.

security : if this parameter is included, it specifies that a secure connection should be used.

It can have two values: 1) must use a secure connection, 2) try to use a secure connection.

certificate_verification : if this parameter is used, it specifies that the peer certificate must be

validated. It can have two values: 1) must validate, 2) validation is optional (the validation

will be performed but it will not influence the connection establishment; the application

can query the NEAT System to discover if verification succeeded or not).

certificate : this specifies a file that contains a certificate to be used.

key : this specifies a file that contains a public key to be used.

TLS/DTLS version : a list of TLS/DTLS versions to be advertised and accepted.

cipher suites : a list of cipher suites to be advertised and accepted.

B This primitive is used to initially adjust properties of a NEAT flow. It must be called before

calling OPEN or ACCEPT (and will return an error otherwise). If the primitive is not called or a

parameter is not used, the following default choices are made:

messages : true.

LL_secure_local_interface : 0.

capacity_profile : system default (e.g., 3 for FreeBSD, 4 for Linux).

security : 2.

certificate_verification : 2.

certificate : if certificate is not specified, no certificate will be used.

key : if key is not specified, no private key is used. If key is not specified and certificate is, the

private key will be taken from certificate.

TLS/DTLS : 1.2, 1.1 and 1.0 for TLS and 1.2 and 1.0 for DTLS.

cipher suites : the default list will be defined as a policy.

→ The parameters cover, in sequence, the Transport Service Features Selection of a secure in-

terface, NEAT flow capacity profile and NEAT flow security from Table 2. They were included

in the INIT_FLOW call for the following reasons:

LL_secure_local_interface : this mainly influences the OPEN and ACCEPT calls.

capacity_profile : this cannot normally be changed on-the-fly, and quickly changing this

would have quite unforeseeable consequences.

security : this is commonly decided at the beginning and may often not be possible to

change afterwards. TCPINC is implicit for now.
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3.3.2 Features that require immediate action / feedback from NEAT

P: REQUEST_CAPACITY( rate time )

rate : a requested sending rate by the application, in bits per second.

time : the duration over which this rate is requested.

B This primitive informs the NEAT System that the application needs the provided rate for du-

ration time, starting at the moment this primitive is called. No guarantees are given, this is

purely advisory.

→ This covers the Transport Service Feature NEAT flow capacity in Table 2.

3.3.3 Features that require immediate action / feedback from the application

E: RATE_HINT( )

Returns: [new_rate]

new_rate is the new maximum allowed sending rate in bit/s.

B If new_rate is missing, this event only notifies the application that it can send faster. This is

purely advisory, NEAT gives no guarantees that e.g. a newly suggested sending rate will not lead

to congestion.

→ This covers the Transport Service Feature Capacity/bandwidth hints for application, up-

speeding information in Table 1.

E: SLOWDOWN( )

Returns: ECN [new_rate]

ECN is a boolean. If it is true, the hint to slow down comes from an encountered mark

of Explicit Congestion Notification (ECN) [15]. new_rate is the new maximum allowed

sending rate, in bit/s.

B This notifies the application to send more slowly, e.g., because there is congestion in the

network. Note that if ECN = false, the hint may have been produced by other indications, e.g.,

packet loss, but it could also have been produced by an encountered ECN-mark that is already

reacted upon inside or below NEAT.

→ This covers the Transport Service Feature Downspeeding information in Table 1.

3.3.4 Properties of the neat_ctx and neat_flow data structures

Properties that are read by applications are given the same names as the Transport Service Features

covered in Table 1:

• NEAT selected transport protocol: Choice of SCTP, TCP, etc.

• NEAT transport parameters: Parameters used (e.g., congestion control mechanism, TCP sysctl

parameters, . . . ).

• Interface statistics: Interface MTU, addresses, connection type (link layer), etc.
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• Path statistics: Experienced RTT, packet loss (rate), jitter, throughput, path MTU, etc.

• Destination IP address information: one or more destination IP addresses, information about

which destination IP address is used by default.

Properties that are adjusted by applications are given the same names as the Transport Service

Features covered in Table 2:

• NEAT flow seamless handover: This boolean property enables or disables the “seamless han-

dover” functionality of NEAT. This can be useful for applications that implement their own han-

dover functionality, to avoid function duplication. Default: false.

• Optimise for continuous connectivity: This boolean property enables or disables mechanisms

that try to make communication more robust, perhaps at some cost (e.g., lower throughput).

Default: false.

• NEAT flow disable dynamic enhancement: If this boolean property is set to true, it prevents

NEAT from changing the behaviour of a flow on-the-fly. This means that, e.g., it will not use

“seamless handover” even if this capability is enabled. Default: false.

• NEAT flow metadata: Information about the flow such as the type and name of the application,

the length of the flow in bytes, the expected duration, etc.

• Flow metadata privacy: This integer number controls the privacy of the information classified

under NEAT flow metadata. It has the following meanings: 0: do not send metadata into or

across the network (keep it only local). 1: freely send metadata into the network using any means.

Other values will be reserved in the future for the application to specify the allowed signalling

protocol / mechanism. Default: 0.

• NEAT flow delay budget: This floating point number indicates a “delay budget” in milliseconds.

This can be used to communicate more or less stringent time requirements, such that data of

the flow may reside in buffers for a longer or a shorter time. This is purely advisory, NEAT gives

no delay guarantees.

• NEAT flow low latency: This property consists of a boolean that is used to indicate that a flow

has a stronger need for low latency than for high throughput and a desired maximum send buffer

size (advisory only). Among other things, this is expected to enable or disable methods that delay

data transmission to increase the chance to send a full-sized segment.

• NEAT flow group: This integer number identifies groups of flows—all flows having the same

number belong to a common group. Flows in one group should obtain common congestion

management, allowing a chosen NEAT flow priority to play out between these flows, e.g., be-

cause it is believed that they share the same network bottleneck.

• NEAT flow priority: This defines a floating point priority value from 0.1 to 1 for the NEAT flow.

The word “priority” here relates to a desired share of the capacity such that an ideal NEAT im-

plementation would assign the NEAT flow the capacity share P×C/sum_P, where P = priority,

C = total available capacity and sum_P = sum of all priority values that are used for the NEAT

flows in the same NEAT flow group. The implementation of per-flow priorities is local, meaning

that it may yield unexpected behaviour when it interferes with prioritisation inside the network
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(e.g., when additionally changing the DSCP value). The priority setting is purely advisory; no

guarantees are given. Default: 0.5.

• DSCP value: The DSCP value that the application desires to use for all sent messages of the

NEAT flow. No guarantees are given regarding the actual usage of the DSCP value on packets.

This covers the Transport Service Features NEAT flow DSCP support and Per-message DSCP

support in Table 2. It maps to CHANGE-DSCP.TCP in [21] and also exists for SCTP according

to RFC 6458 [19]. Adjusting this property is expected to mostly be useful for datagram services.

Care should be taken when adjusting this value, in particular when changing it on an already

active flow as this can impact ordering and congestion control [2].

4 Conclusion

This deliverable has built on the use cases defined in D1.1 and other inputs to identify requirements

for the APIs and associated service components to realise a design for a transport system. This analysis

has contributed to understanding of the best practice for using the existing transport protocols. The

presented API definition is an important part of the NEAT System design.

When work on draft-ietf-taps-transports-usage [21] began, it was assumed that a generic API could

be developed from the primitives and events that are described in it. This deliverable proves this as-

sumption right, helping to show that NEAT’s goal of enabling efficient protocol-independent com-

munication is attainable. This also makes this deliverable useful as a basis for future inputs to the

IETF TAPS Working Group. The API that was developed here is abstract, which makes it language-

independent and allows the designer and the reader to focus on the functionality rather than syn-

tactical details. Certainly, creating a protocol-independent transport system with its concrete API is

easier when the expected capabilities are laid out in the form of an abstract API, as provided by this

document. Here, NEAT functionality was presented in the form of primitives and events, or as read-

able/changeable properties of a NEAT flow. This decision was made on the basis of the previously

defined TCP and SCTP APIs that were used as input to draft-ietf-taps-transports-usage [21] as well as

the dynamic nature of the expected underlying functionality. A concrete API may exhibit its function-

ality in a different way.

The API primitives and functions in Section 3 represent the functions of TCP, SCTP as per RFC 4960

[18] as well as other agreed-upon functionality of the NEAT User API at the time of writing this docu-

ment. Planned functionality to be added in future versions includes:

• Primitives and Events for UDP and UDP-Lite. The present document is strictly based on the cur-

rent version of [21] as well as the Use Cases from D1.1. UDP was not considered here—however,

there is already some support for UDP within the NEAT prototype implementation, and a recent

NEAT-authored Internet draft [6] is a first step towards a similar process to incorporate UDP in

the next revision of the API specification.

• Possible Primitives and Events that appear due to the extension of the SCTP part in a future

version of draft-ietf-taps-transports-usage [21].

• We plan to automatise the use of multi-streaming such that it does not need to be a functionality

that is visible to the application programmer. This means that, in the future, a NEAT Flow could

be a TCP connection, an SCTP association or merely a stream inside an already existing SCTP

association, for example.
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• We plan to include functionality akin to TCP Fast Open [3], which has an impact on the API be-

cause it may deliver some data already upon opening a connection (NEAT Flow), yet this data

may arrive as a duplicate. Since this functionality is not yet available in SCTP (but under devel-

opment in NEAT Work Package 3 / Task 3.1), we have postponed its inclusion in the NEAT User

API.

• The consortium has not yet decided if/how to exhibit control of sender-side buffers. This deci-

sion is not trivial. For instance, we think the functionality provided by the TCP_NOTSENT_LOWAT

socket option [4] would be useful for a NEAT programmer who intends to minimize latency; us-

age of this mechanism, which controls the buffer space used for unsent data, is automatised in

the NSURLSession and CFNetwork-layer APIs in MacOS X [10], yet the TCP socket API requires

a number (the low water mark), so there appears to be a trade-off in either letting the program-

mer control this value or automatising its use. Moreover, NEAT buffers data internally, and, also

for this buffer, it is not yet entirely clear to us whether control of this sender-side buffer should

(only?) be automatised.

The API in this deliverable provides a basis for much of the implementation work in NEAT. As the

project progresses we expect Task 1.4 to continue architectural analysis based on the design presented

in D1.1 and D1.2. This will propose any needed refinements to the architecture, based on implemen-

tation experience, updated after completing the validation and performance analysis. This work has

already started to contribute to the standards initiatives in Work Package 5, and as this work continues

in Task 1.4 we expect this standards work to mature.
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A NEAT Terminology

This appendix defines terminology used to describe NEAT. These terms are used throughout this doc-

ument.

Application An entity (program or protocol module) that uses the transport layer for end-to-end de-

livery of data across the network (this may also be an upper layer protocol or tunnel encapsula-

tion). In NEAT, the application data is communicated across the network using the NEAT User

API either directly, or via middleware or a NEAT Application Support API on top of the NEAT User

API.

Characteristics Information Base (CIB) The entity where path information and other collected data

from the NEAT System is stored for access via the NEAT Policy Manager.

NEAT API Framework A callback-based API in NEAT. Once the NEAT base structure has started, using

this framework an application can request a connection (create NEAT Flow), communicate over

it (write data to the NEAT Flow and read received data from the NEAT Flow) and register callback

functions that will be executed upon the occurrence of certain events.

NEAT Application Support Module Example code and/or libraries that provide a more abstract way

for an application to use the NEAT User API. This could include methods to directly support a

middleware library or an interface to emulate the traditional Socket API.

NEAT Component An implementation of a feature within the NEAT System. An example is a “Happy

Eyeballs” component to provide Transport Service selection. Components are designed to be

portable (e.g. platform-independent).

NEAT Diagnostics and Statistics Interface An interface to the NEAT System to access information

about the operation and/or performance of system components, and to return endpoint statis-

tics for NEAT Flows.

NEAT Flow A flow of protocol data units sent via the NEAT User API. For a connection-oriented flow,

this consists of the PDUs related to a specific connection.

NEAT Flow Endpoint The NEAT Flow Endpoint is a NEAT structure that has a similar role to the Trans-

mission Control Block (TCB) in the context of TCP. This is mainly used by the NEAT Logic to

collect the information about a NEAT Flow.

NEAT Framework The Framework components include supporting code and data structures needed

to implement the NEAT User Module. They call other components to perform the functions

required to select and realise a Transport Service. The NEAT User API is an important component

of the NEAT Framework; other components include diagnostics and measurement.

NEAT Logic The NEAT Logic is at the core of the NEAT System as part of the NEAT Framework com-

ponents and is responsible for providing functionalities behind the NEAT User API.

NEAT Policy Manager Part of the NEAT User Module responsible for the policies used for service se-

lection. The Policy Manager is accessed via the (user-space) Policy Interface, portable across

platforms. An implementation of the NEAT Policy Manager may optionally also interface to ker-

nel functions or implement new functions within the kernel (e.g. relating to information about

a specific network interface or protocols).
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NEAT Selection Selection components are responsible for choosing an appropriate transport end-

point and a set of transport components to create a Transport Service Instantiation. This utilises

information passed through the NEAT User API, and combines this with inputs from the NEAT

Policy Manager to identify candidate services and test the suitability of the candidates to make a

final selection.

NEAT Signalling and Handover Signalling and Handover components enable optional interaction

with remote endpoints and network devices to signal the service requested by a NEAT Flow, or to

interpret signalling messages concerning network or endpoint capabilities for a Transport Ser-

vice Instantiation.

NEAT System The NEAT System includes all user-space and kernel-space components needed to re-

alise application communication across the network. This includes all of the NEAT User Module,

and the NEAT Application Support Module.

NEAT User API The API to the NEAT User Module through which application data is exchanged. This

offers Transport Services similar to those offered by the Socket API, but using an event-driven

style of interaction. The NEAT User API provides the necessary information to allow the NEAT

User Module to select an appropriate Transport Service. This is part of the NEAT Framework

group of components.

NEAT User Module The set of all components necessary to realise a Transport Service provided by

the NEAT System. The NEAT User Module is implemented in user space and is designed to be

portable across platforms. It has five main groupings of components: Selection, Policy (i.e. the

Policy Manager and its related information bases and default values), Transport, Signalling and

Handover, and the NEAT Framework. The NEAT User Module is a subset of a NEAT System.

Policy Information Base (PIB) The rules used by the NEAT Policy Manager to guide the selection of

the Transport Service Instantiation.

Policy Interface (PI) The interface to allow querying of the NEAT Policy Manager.

Stream A set of data blocks that logically belong together, such that uniform network treatment would

be desirable for them. A stream is bound to a NEAT Flow. A NEAT Flow contains one or more

streams.

Transport Address A transport address is defined by a network-layer address, a transport-layer pro-

tocol, and a transport-layer port number.

Transport Service A set of end-to-end features provided to users, without an association to any given

framing protocol, which provides a complete service to an application. The desire to use a spe-

cific feature is indicated through the NEAT User API.

Transport Service Feature A specific end-to-end feature that the transport layer provides to an appli-

cation. Examples include confidentiality, reliable delivery, ordered delivery and message-versus-

stream orientation.

Transport Service Instantiation An arrangement of one or more transport protocols with a selected

set of features and configuration parameters that implements a single Transport Service. Exam-

ples include: a protocol stack to support TCP, UDP, or SCTP over UDP with the partial reliability

option.
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B Paper: De-ossifying the Internet transport layer: A survey and fu-

ture perspectives

The following research paper has been produced by project participants, and has been published in

IEEE Communications Surveys and Tutorials [14].
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De-ossifying the Internet transport layer: A survey
and future perspectives

Giorgos Papastergiou, Anna Brunstrom, Gorry Fairhurst, Karl-Johan Grinnemo, Per Hurtig, Naeem Khademi,
David Ros, Michael Tüxen, Michael Welzl, Dragana Damjanovic and Simone Mangiante

Abstract—It is widely recognized that the Internet transport
layer has become ossified, where further evolution has become
hard or even impossible. This is a direct consequence of the ubiq-
uitous deployment of middleboxes that hamper the deployment
of new transports, aggravated further by the limited flexibility of
the Application Programming Interface (API) typically presented
to applications. To tackle this problem, a wide range of solutions
have been proposed in the literature, each aiming to address a
particular aspect. Yet, no single proposal has emerged that is
able to enable evolution of the transport layer.

In this work, after an overview of the main issues and reasons
for transport-layer ossification, we review proposed solutions and
discuss their potential and limitations. The review is divided
into five parts, each covering a set of point solutions for a
different facet of the problem space: 1) designing middlebox-
proof transports, 2) signaling for facilitating middlebox traversal,
3) enhancing the API between the applications and the transport
layer, 4) discovering and exploiting end-to-end capabilities, and
5) enabling user-space protocol stacks. Based on this analysis,
we then identify further development needs towards an overall
solution. We argue that the development of a comprehensive
transport layer framework that is able to facilitate the integra-
tion and cooperation of specialized solutions in an application-
independent and flexible way is a necessary step toward making
the Internet transport architecture truly evolvable. To this end,
we identify the requirements that such a framework should fulfill
and provide insights for its development.

Index Terms—Transport protocols, protocol-stack ossification,
API, middleboxes, user-space networking stacks.

I. INTRODUCTION AND BACKGROUND

Networks can and do vary significantly in the set of func-
tions they offer and their ability to move data between end-
points. The transport layer operates across the network and is
responsible for efficient and robust end-to-end communication
between network endpoints. This layer was designed to hide
the details and variability of the network service from the
applications that need to use it. The Internet’s transport layer
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M. Tüxen is with Münster University of Applied Sciences, Bismarckstraße
11, 48565 Steinfurt, Germany. E-mail: tuexen@fh-muenster.de.

D. Damjanovic is with Mozilla Corporation. E-mail: ddam-
janovic@mozilla.com.

S. Mangiante is with EMC Corporation, Ovens, Co. Cork, Ireland. E-mail:
simone.mangiante@emc.com.

also contains other functions that are difficult or impossible
to provide within a network, such as reliability, verification of
delivery, flow control to prevent the application overwhelm-
ing the remote endpoint, congestion control to prevent the
application from overwhelming the network, etc. People using
the Internet mostly run applications that are based on the
Transmission Control Protocol, TCP [1], which provides these
transport functions.

Some applications need a different set of services to those
offered by TCP. For example, a web client may wish to
be able to prioritize sub-flows carrying specific objects, a
multimedia flow may prefer timeliness to reliable delivery,
and IP telephony can be tolerant to packet loss or in some
case bit bit errors. There are many cases where TCP simply
does not meet the need of applications—yet it ends up being
used because it “just works”, but not necessarily very well
[2]. Applications that do not want the transport semantics of
TCP typically just use the User Datagram Protocol, UDP [3].
While UDP provides flexibility that allows any set of services
to be defined, every function needed has to be implemented
at the application layer.

Some initiatives have developed alternate protocols to TCP,
suited for other application types, for instance: the Datagram
Congestion Control Protocol (DCCP) [4] was proposed to
support streaming multimedia; the Stream Control Transport
Protcol (SCTP) [5] originally targeted telephony signaling;
UDP-Lite [6] supports error-tolerant audio and video services
over wireless links. However, despite being standardized,
with available implementations for common platforms, these
transports are seldom seen in the general Internet, and TCP
and UDP remain the only widely used transports.

A. Transport-layer ossification: overview of issues

Why do developers and users not adopt more modern
protocols? It is not because new transports do not meet a real
need. The following paragraphs examine the main reasons for
this ossification of the transport layer.

1) Middleboxes: To become usable, a new transport needs
to be made available to applications, requiring upgrades of
both the sending and receiving endpoints. However, for a new
transport to be adopted, the need to upgrade end-hosts is not
the only obstacle to overcome. Ossification of the network
infrastructure is probably the most significant barrier [7]–[10]:
a transport protocol must be able to traverse the network; a
new protocol is only useful if it is able to traverse paths on a
larger part of the Internet. The ubiquity of middleboxes of a
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variety of forms (from Network Address and Port Translators
(NAPTs) to firewalls, accelerators, load-balancers, and a range
of portals and more exotic devices) makes it very hard to
change the status quo. Performing advanced network functions
that go beyond the network layer, middleboxes not only need
to understand the semantics of transport layer protocols, but
some also tamper with protocol headers and thus violate end-
to-end semantics [11]. As a result, any new native transport
(layered directly on IP) is doomed to fail to pass through
middleboxes until specific explicit support is added for that
transport, while new extensions to standard transports (i.e.,
to TCP and UDP) are also vulnerable to potential middlebox
interference [12].

If a protocol (or application) is widely used, then it is
likely that there exists a business case to support the protocol.
However, the motivation to support a protocol that has not yet
reached wide-scale use is much weaker or non-existent. This
creates a “tussle”, described in [13], or similarly the “vicious
circle” described in [2]. Quite simply, a new protocol will not
be deployed over the Internet—because to do so would first
require a business case, predicated on a user base that already
have deployed the protocol. This ossification has resulted in
little-to-no use of new transports for the last decade.

Even when TCP or UDP is used, middleboxes still cause
significant connectivity problems to applications. For instance,
since most NAPTs are built around the traditional client/server
application model, they usually break end-to-end connectivity
for applications that need direct communication between two
arbitrary hosts, such as peer-to-peer applications [14]. While
Application Layer Gateways (ALGs) are often used to embed
application-specific knowledge into middleboxes to facilitate
protocol traversal for particular applications, this solution has
significant limitations in terms of deployment and scalability:
a separate ALG is needed for each application protocol used
(e.g., SIP [15], FTP [16], etc.) and hence all NAPTs need to be
updated every time a new application (i.e., a new application
protocol) needs to be supported. Security-related manipulation
of TCP and UDP traffic performed by corporate firewalls
and NAPTs can also cause significant connectivity problems
in enterprise environments. Finally, some middleboxes expect
only a certain application protocol like HTTP; in the face of
such devices, the only solution is to tunnel connections over
the supported protocol.

2) Application Programming Interfaces: A flexible and
extensible API between the applications and the transport layer
is essential for applications to be able to harness the benefits
of new transport services. Today, the socket API essentially
serves as the omnipresent application networking interface.
However, it has become more and more apparent that this
API is contributing to the Internet transport-layer ossification
problem. Its simplicity may have led to its ubiquity, but has
also held back the development of more enhanced APIs. This
is evident in the currently ongoing standardization of the SCTP
socket API—the SCTP transport protocol incorporates support
for multihoming, but it is impossible to export this support
through the standard socket API.

The very success of TCP and UDP has therefore led to
ossification of the API presented to applications. These have

now become the only widely available transports. This is
reflected in the implementation of the socket API, which ties
applications to a priori choices of transport protocol (either
TCP or UDP). An application designed to work with one of
these transports will need to be changed to support any new
transport protocol.

The Internet has been designed so that transports only rely
on core network functions, the so-called Best-Effort service.
This has enabled transports to work across a diverse range
of networks without having to know exactly how these pro-
vide the network service. However, this does not mean that
information about what the transport/application needs from
the network would not be helpful to improve the efficiency of
the network or to enable the application to receive the most
suitable service.

3) Other issues: An evolvable transport layer architecture
requires that endpoints are capable of discovering if a new
transport can be used: An endpoint initiating a communication
session must know whether a transport (and any required
transport options) are supported both along the end-to-end
network path, and by the intended remote endpoint(s).

Except for some one-sided transport-layer mechanisms (e.g.,
the sender choice of a congestion control algorithm in TCP),
the choice of a transport will require not only discovering the
set of transports that are available at the remote endpoint, but
also when more than one is supported at both ends, there needs
to be an agreement from both endpoints on the choice of the
particular transport.

Many network paths include middleboxes, some of which
can, and often will, interfere with transport protocols. End-
points need to assess whether a particular choice of transport
can be safely used over the path.

Finally, one major additional challenge to deploying a
new transport protocol is whether the transport protocol is
supported across multiple OS platforms (e.g. Linux, FreeBSD,
Mac OSX and Windows). Modifying OS kernel code can be
costly in terms of deployment effort and often requires an OS
update at the sender and/or the receiver to support the new
transport, making any development effort platform-dependent.

B. Scope and structure of the paper

A range of point solutions have been proposed in the
literature to address the above issues. Each covers a different
aspect of the overall problem. In this paper, we review previous
and ongoing efforts in the field. Our goal is to provide a
better understanding of the pertained research issues, identify
the potential and limitations of existing point solutions, and
identify the need for further development.

We focus on evolutionary deployment. This restricts our
survey to proposals that do not require redesigning the Internet
architecture from scratch, hence, clean-slate approaches have
been ruled as out of scope. Communication middleware is also
beyond the scope of this survey, because such middleware
usually provides a different communication abstraction to
applications, rather than offering transport services different
to those of a common networking stack.
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Based on our analysis, we argue that proposing solutions in
isolation cannot result in an Internet transport layer architec-
ture that is truly evolvable and that a necessary step forward
is the development of a comprehensive transport layer frame-
work able to facilitate the integration and cooperation of new
network and transport functions in an application-independent
and flexible way. We therefore identify the requirements that
such a framework should fulfill and provide insights for its
development.

The remainder of the paper is organized as follows. Sec-
tions II to VI provide an overview of previous and ongoing
efforts to tackle ossification of the Internet transport layer.
The review is divided into five parts, each covering a different
aspect of the overall problem:

• § II focuses on ways to design middlebox-proof trans-
ports, as a means to overcome the barriers imposed by
middleboxes to the using new transport protocols and
protocol features.

• § III is devoted to mechanisms that seek to better sup-
port end-to-end connectivity by facilitating traversal of
middleboxes.

• § IV outlines approaches that aim to enhance the API
between applications and the transport layer.

• § V examines approaches that allow endpoints to discover
and agree on which protocols are supported along an end-
to-end path.

• Lastly, § VI explores techniques for enabling user-space
protocol stacks.

Section VII summarizes the survey and taxonomy of point
solutions to transport ossification presented in §§ II–VI. Next,
Section VIII analyzes the requirements for an evolvable trans-
port framework. Finally, Section IX concludes the paper by
identifying future research directions that may assist work in
this area.

II. DESIGN OF MIDDLEBOX-PROOF TRANSPORTS

There have been recent efforts to provide a richer set of
transport services to applications than those provided by TCP
and UDP within the constrained design space imposed by
the ubiquitous deployment of middleboxes. These span two
broad research directions: 1) extending TCP to provide a
richer set of transport services, while guarding new extensions
against potential middlebox interference, and 2) building new
application-specific transports on top of UDP or TCP to ensure
they transparently pass through existing middleboxes.

A. Extending TCP to offer a richer set of transport services

TCP is an extensible protocol. It can negotiate protocol
extensions during connection establishment and exchange
additional control information throughout the lifetime of a
connection. During the last decade, measurement studies have
investigated how existing middleboxes interact, either inten-
tionally or unintentionally, with TCP extensions, how prevalent
these interactions are, and to what extent they affect TCP’s
extensibility [10], [12], [17]–[19]. Examples of middlebox
behavior (some of which are illustrated in Fig. 1) include:
blocking or stripping of unknown TCP options, modification

of TCP header fields and options (such as the Initial Sequence
Number (ISN) and the Maximum Segment Size (MSS) op-
tion), re-segmentation or coalescence of TCP segments, and
behavior triggered by “non-stereotypical” TCP communication
seen on the wire. These empirical studies provide a first
demarcation of the solution space and the first guidelines for
designing middlebox-proof TCP extensions [12].

Multipath TCP (MPTCP) [12], [20], [21], Tcpcrypt [22],
[23], and Gentle Aggression [24] are prominent examples of
TCP extensions whose design was highly influenced by the
need to account for known middlebox behavior. Techniques
were adopted to guard extended operations against potential
middlebox interference. For instance, a fallback strategy to
plain TCP is incorporated in all approaches to handle cases
where extended operations fail (e.g., when options are stripped
from SYN or regular packets, or when payload modification
is detected). This ability to fall back to plain TCP assures
stability and is considered an important design goal for achiev-
ing widespread deployment. Relative sequence numbers are
considered when encoding sequencing information within the
new options to cope with potential re-writing of sequence
numbers. Other techniques include the use of an additional
data-level sequence space in MPTCP that allows it to maintain
consistent sequence numbering on the wire while ensuring
in-order data delivery over multiple subflows. Tcpcrypt was
intentionally designed to exclude fields from the authentication
header that could be expected to be modified by the path.

Recent work has identified the need for TCP to infer in-
path alterations of packet header fields as a way to enable
deployment of new TCP functions. Craven et al. [19] pro-
posed TCP HICCUPS, an enhancement that allows TCP to
detect packet header manipulation at field-level granularity and
take appropriate actions (such as disabling a non-compatible
extension) based on the middlebox behavior observed on a
path.

TCP has a limited maximum header size. This led the de-
signers of Tcpcrypt to the exchange of encryption information
within the TCP payload (i.e., the body of the INIT1 and
INIT2 sub-options). This highlights a significant factor that
constrains the design space of TCP extensions: The limited
space constrains the number and the extent of TCP options
that can be simultaneously used by a TCP connection.

Extending the TCP option space has become an active
research area that faces similar middlebox-related issues. For
instance, Ramaiah [25] presents several middlebox consid-
erations for designs to increase the TCP options space and
reviews approaches proposed up to 2012. More recent pro-
posals include TCP Extended Data Offset (EDO) [26], [27],
TCP SYN Extended Option Space (SYN-EOS) [28], and Inner
Space [29]. TCP EDO extends the option space in all packets
except the initial SYN packets (i.e., SYN and SYN/ACK)
using a TCP option to override the TCP data offset field, while
TCP SYN-EOS complements TCP EDO by extending the
option space in SYN packets using an additional out-of-band
packet during connection establishment. Inner Space uses a
different strategy to extend the option space in every segment,
where options are tunneled within the segment payload and a
dual handshake procedure is used for assuring backwards com-
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header option A option C payloadoption B

middlebox

header option A option C payloadoption B

header option A option C payload

(a) Stripping of unrecognised TCP options from TCP segments: the
segment is forwarded but the unknown option is removed.

header option A option C payloadoption B

middlebox

header option A option C payloadoption B

(b) Blocking of TCP segments due to unrecognised TCP options: the
segment is dropped.

port nos. seq = A other 
fields payloadack = B

middlebox

port nos. seq = C payloadack = D other 
fields

port nos. seq = A
seq = C payloadack = B

ack = D
other 
fields

(c) Rewriting of TCP sequence and acknowledgement numbers. The
TCP checksum has to be rewritten as well.

middlebox

options payload Aheader

options payload Bheader

+header payload Aoptions header payload Boptions

header payload A + Boptions

(d) Coalescing of small TCP segments into a single, larger segment:
parts of the header are rewritten, and options in the coalesced segment
may change.

Fig. 1. Examples of middlebox interactions with TCP.

patibility with legacy servers. These approaches are currently
under development and further work is needed to evaluate their
deployability.

Experience in the design of MPTCP inspired another possi-
ble dimension to the design space: TCP “camouflaging” [30].
This suggests a new transport protocol could operate alongside
TCP when the new protocol is disguised to look like TCP on
the wire as in Polyversal TCP (PVTCP) [30]. Built upon the
MPTCP subflow mechanism, PVTCP allows applications to
explicitly customize the transport semantics of each subflow
according to their requirements and assures a fallback to plain
TCP or MPTCP. It remains to be seen whether the complexity
of Polyversal TCP, or similar approaches, will offer a feasible
path to deployment.

Although recent advances indicate that TCP continues to be
extensible, more detailed and large-scale studies are needed
to provide a deeper insight into the prevalence and range of
middlebox behaviors. The IAB Workshop on Stack Evolution
in a Middlebox Internet (SEMI) [31] identified this need
and resulted in the proposed “Measurement and Analysis for
Protocols1” (MAP) IRTF research group that aims to be a

1Formerly known as “How Ossified is the Protocol Stack?” (HOPS).

forum for exchange and discussion of insights from such
measurements [32].

B. Using widely deployed transports as substrates

The broad deployment and support of TCP and UDP
in the Internet have led to the proliferation of a new de-
sign/deployment model where transport layer innovation oc-
curs on top of these protocols. Typically, such transports
are integrated into applications and aim to fulfill specific
application requirements.

The choice between TCP and UDP involves a trade-off
between design and implementation effort, flexibility and per-
formance. On the one hand, UDP provides a ”least-common-
denominator” substrate with greater flexibility to control how
data are sent over the network. However, building new trans-
ports on top of UDP often involves reinventing the wheel
for services already offered by TCP (e.g., feature negotiation,
congestion control, and reliability) and requires maintaining
connection state in middleboxes by sending keep-alive mes-
sages that waste capacity and energy [33]. Guidelines for
using UDP robustly are given in [34]. On the other hand,
TCP is a feature-rich transport protocol that has undergone
remarkable evolution over the past decades and can hence offer
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significant performance advantages over UDP [35]. However,
TCP does not preserve message boundaries and is unable to
support the use of only a subset of the services it provides;
providing services that may not be needed can result in
significant performance penalties. For example, the TCP in-
order delivery service can incur increased end-to-end delays
in lossy networks due to head-of-line blocking at the receiver.

The Minion suite of protocols has been proposed to ad-
dress the above shortcomings of using TCP as a substrate
protocol [35]. This was designed to offer an unordered,
message-oriented delivery alternative to UDP. Minion is wire-
compatible with TCP (or TLS/TCP when secure services are
needed), at the expense of using slightly increased capacity.
Improvements to the Minion suite, such as support for mul-
tiplexing and traffic prioritization have been introduced [36].
Despite its attractive features, the Minion suite has not seen
wide-scale use. One reason could be that one of its greatest
benefits, the ability to relax the in-order semantics of TCP,
requires changes to the TCP stack, and hence is OS-dependent.

UDP can be used as a lightweight substrate and has been
used since the 1990s to carry multimedia traffic with the Real-
Time Transport Protocol (RTP) [37]. Characteristic examples
using UDP are:

• Google’s Quick UDP Internet Connections (QUIC) pro-
tocol [38], [39], a UDP-based low-latency alternative to
TCP/TLS for SPDY [40] and HTTP/2 [41].

• Adobe’s Real Time Media Flow Protocol (RTMFP) [42]
enables efficient peer-to-peer multimedia streaming.

• The widely used DTLS [43] protocol provides stream-
and datagram-oriented security services over UDP.

• The uTorrent Transport Protocol (uTP) [44], a UDP-based
protocol for BitTorrent designed to offer a less-than-best-
effort service for peer-to-peer file sharing applications.

• The UDP-based Data Transfer (UDT) protocol [45], [46]
designed for efficient transferring of large data volumes
over high-speed networks.

• The Structured Stream Transport (SST) protocol [47], a
generic approach designed to offer services similar to
SCTP [5], such as multistreaming and stream prioriti-
zation, over UDP.

In addition to the above approaches, methods have been
standardised by the IETF that encapsulate native protocols
such as SCTP [5] and DCCP [4] within UDP [48], [49].
Methods have been proposed for encapsulating TCP over
UDP enabling it to traverse network paths where only UDP
is supported [50]. There is a large variety of (incompatible)
tunnel and encapsulation frameworks that allow protocols to
operate over UDP. Generic solutions have been sugested for
encapsulating native IP protocols within UDP: Generic UDP
Tunneling (GUT) [51] is a simple UDP encapsulation that aims
to transparently tunnel native transports over a single well-
known UDP port. GUT modifies native IP packets by including
an appropriate UDP/GUT header, reconstructing the packets
at the receiver. Generic UDP Encapsulation (GUE) [52] is
similar to GUT, but focuses on leveraging the capabilities of
network devices for handling UDP flows (e.g., load balancing).
GUE uses a UDP source port as an inner flow identifier

IP header transport 
header payload

IP header transport 
header payloadUDP 

header
GUT 

header

≥ 12-byte overhead

specific UDP 
destination port 

(GUT)

transport protocol 
number (from 

original IP header)

original IP packet

(a) Generic UDP Tunneling (GUT) [51], allowing encapsulation of an arbitrary
native transport protocol.

IP header SCTP 
header SCTP chunks

original IP packet

IP header SCTP 
header SCTP chunksUDP 

header

8-byte overhead

specific source and 
destination ports

(b) SCTP-over-UDP encapsulation [48].

IP header TCP 
header payload

original IP packet

IP header “TCP” 
header payloadUDP 

header

no overhead (same size
as original TCP header)

same source and 
destination ports

some fields rearranged;
ports and checksum in UDP header;
Urgent pointer removed

(c) TCP-over-UDP encapsulation [50].

Fig. 2. Examples of transport encapsulation methods based on UDP.

and permits encapsulation of layer-2 and layer-3 protocols.
Although generic approaches could allow for more consistent
deployment, protocol-specific designs may still be needed to
ensure the functionality of the encapsulated protocol is not
affected.

Fig. 2 illustrates some of the UDP-based encapsulation
methods just described.

Besides enabling middlebox traversal, UDP encapsulation
offers an additional benefit: it allows user-space implementa-
tions of native protocols to be a part of applications without
requiring special privileges to access the IP layer. The SCTP
user-space implementation in [53] also offers this option.
However, UDP encapsulation increases protocol overhead due
to the additional UDP headers and also affects interoperability
as the encapsulated protocol cannot in principle interoperate
with the native one. Other potential drawbacks include: ad-
ditional processing overhead, possibly redundant functionality
(e.g., checksums) and increased design complexity due to an
additional point of multiplexing.
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McQuistin and Perkins [54] approach the problem from a
slightly different perspective and suggest, at a conceptual level,
to reinterpret the semantics of TCP and UDP to support novel
services. They propose reinterpretation of UDP headers as
transport identification headers where port numbers become
dynamic identifiers of the transport protocol carried in the
payload, as well as the relaxation of TCP. The Minion suite
discussed above could contribute to this development.

Finally, there is ongoing work [55] to identify the suitability
of the DTLS protocol [43] as a sub-transport for providing
standardized security to higher-layer transports, along with
services similar to that of SPUD (§ III-B), for instance signals
to a middlebox to indicate the begining or end of a flow.
Huitema et al. [55] identified requirements that need to be
fulfilled, including zero-latency setup and low overhead.

III. SIGNALING FOR FACILITATING MIDDLEBOX
TRAVERSAL

Even when TCP or UDP is used, middleboxes can cause
significant connectivity problems to applications. For example,
a NAPT can break the end-to-end connectivity for peer-to-
peer applications (see Fig. 3) and applications that use control
protocols such as SIP [15], RTSP [56], or FTP [16] preventing
them from communicating reachability information.

A variety of support protocols and mechanisms have been
proposed to improve connectivity across paths with middle-
boxes. These focus on ways to control middlebox behavior,
methods to allow cooperation between endpoints and middle-
boxes, and methods to facilitate end-to-end connectivity. Such
methods may be categorised as either implicit or explicit.

Implicit control solutions treat middleboxes as black boxes
and trigger specific middlebox behaviors using data traffic sent
to a well-known third party server. An explicit control solution
allows an endpoint to explicitly interact with a middlebox
to control or influence its behavior, e.g., to create NAPT
mappings or to configure the lifetime for flow state.

A. Implicit middlebox control

Interactive Connection Establishment (ICE) [57] seeks to
increase the probability of successful connection by trying a
set of implicit control techniques and selecting the one that
works best. ICE was developed for middlebox traversal of
UDP-based multimedia streams established by an offer/answer
protocol (e.g., SIP) and is the middlebox traversal solution
used in WebRTC. This utilises the Session Traversal Utilities
for NAT (STUN) [58] and the Traversal Using Relays around
NAT (TURN) protocol [59]. Ford et at. [14] describe a method
for UDP hole punching. A TCP-based extension of ICE [60]
adds TCP hole punching and considers UDP encapsulation as
an alternative traversal solution for TCP. Techniques for TCP
hole punching are presented in [14] and [61]. A TURN relay
for TCP is specified in [62].

No single solution is perfect in terms of applicability and
performance. For instance, UDP hole punching cannot work
with symmetric NATs, TURN uses a relay server and hence
can be a performance bottleneck, and TCP hole punching

techniques have lower success probability because they de-
pend on specific middlebox behaviors that are not always
supported [63].

B. Explicit middlebox control and cooperation

There is a range of approaches that can allow the transport
to exchange control information with a middlebox, such as
the Universal Plug and Play Internet Gateway Device (UPnP
IGD) protocol, the Port Control Protocol (PCP) [64] and its
precursor NAT Port Mapping Protocol (NAT-PMP) [65], the
Middlebox Communication (MIDCOM) framework [66], and
the NAT/Firewall NSIS Signaling Layer Protocol (NSLP) of
the NSIS protocol suite [67]. Each solution has its own merits
depending on network topology and security requirements,
and hence there is no single solution that an application
can rely upon to be universally available. For this reason,
applications usually resort to use implicit control schemes that
do not require additional support by middleboxes. However,
no solution can always guarantee traversal.

A new form of UDP encapsulation layer could allow explicit
cooperation with middleboxes [31], [68], [69]. This approach
may help re-instantiate the layer boundary between a hop-
by-hop network layer and an end-to-end transport layer [69],
by allowing endpoints to control the information exposed to
the path (encrypting everything above the UDP header), while
still allowing appropriate transport semantics to be explicitly
exposed to the path to assist the middlebox in establising and
maintaining state. An approach in which the transport protocol
encrypts its protocol information can allow the transport to
evolve without needing to consider the interference of mid-
dleboxes [40].

The Substrate Protocol for User Datagrams (SPUD) proto-
type [70] is ongoing work that seeks to realize and facilitate
middlebox traversal for new transports. SPUD groups the
packets of a transport connection into a “tube that can allow
network devices on the path to understand basic session
semantics (e.g., beginning and end of a flow). SPUD may also
enable communication of path information to the sender, and
permits explicit endpoint to/from middlebox communication.

SPUD requires support at both endpoints, and only gains
benefits from middleboxes when they also implement support
for the protocol. Hence it can not be considered a “quick-
fix” solution. It has therefore been designed so that the SPUD
protocol is useful as a simple encapsulation until support is en-
abled in middleboxes, enabling incremental deployment [70].

IV. ENHANCING THE API BETWEEN THE APPLICATIONS
AND THE TRANSPORT LAYER

The first part of this section gives an overview of the
standard socket API and how it has been extended to support
SCTP. The remaining parts consider ways to address some
of the major inherent limitations of this API, i.e., those
limitations that are believed to contribute to the ossification
of the transport layer. We examine some proposed extensions
to the standard socket API, and ways to address its current
tight coupling between the offered transport service and the
underlying transport protocol offering this service.
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Internet

A

NAT

P2P client A
(with public IP address)

P2P client B
(with private IP address)

(a) A cannot reach B (B’s NAT blocks incoming connection requests).

Internet

NAT

rendezvous
server

(1)

(2)

P2P client A
(with public IP address)

P2P client B
(with private IP address)

(3)

(b) Connection reversal: (1) A sends a connection request to a
rendezvous server to which B is connected; (2) the server relays
the request to B; (3) B connects to A. Use of a server and higher
connection-setup latency are potential performance issues. (Adapted
from [14].)

Internet

NATNAT

P2P client A
(with private IP address)

P2P client B
(with private IP address)

(c) Neither A nor B can reach the other client (both NATs block
incoming requests).

Internet

NATNAT

P2P client A
(with private IP address)

P2P client B
(with private IP address)

relay
server

(d) Relaying: the rendezvous server relays data between the connec-
tions from A and B. Use of a relay server can be a performance
bottleneck. (Adapted from [14].)

Fig. 3. Examples of connectivity issues due to NATs, and of implicit control techniques to address them.

A. The socket API

The socket API is one of the most pervading and longest-
lasting interfaces in distributed computing. Conceptually, a
socket is an abstraction of a communication endpoint through
which an application may send and receive data in much the
same way as an open file permits an application to read and
write data to a stable storage device such as a hard disk.
Applications use socket descriptors to access sockets in the
same way that they use file descriptors to access files.

The API was designed from the start to be independent
from the underlying protocol stack, as seen in the way that
a socket is created: int socket( int domain, int type,
int protocol ). The domain parameter determines the com-
munication domain or protocol family of a socket. Examples
of protocol families include: AF_INET for the IPv4 Inter-
net domain; AF_INET6 for the IPv6 Internet domain; and,

AF_UNIX for the local or Unix domain. The type parameter
determines the type of a socket, or, more specifically, the
semantics for the transport service—e.g., whether the transport
service should be stream-oriented, reliable, and connection-
oriented (SOCK_STREAM), or message-oriented, unreliable,
and connectionless (SOCK_DGRAM). Finally, the protocol
parameter lets an application specify which transport protocol
to use to provide the transport service specified by the type
parameter.

Although the socket API comprises a fairly large number of
functions, there are less than a dozen core ones. For example, a
simple connection-oriented client-server application does not
need more than the eight functions listed in Table IV-A. A
server application generally executes the first four functions in
the order given in the table, while a client application attempts
to connect to the server after having created a socket; the send
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TABLE I
BASIC TCP SOCKET API FUNCTIONS.

Function Description

socket Creates a new communication endpoint
bind Binds communication endpoint to local IP address

and port number
listen Makes a socket listen to incoming connections
accept Blocks a socket until a connection request arrives
connect Makes a connection request
send Sends a message over a connection
recv Receives a message over a connection
close Releases the connection

and recv function may be called by both the client and the
server. A connection that is no longer needed is closed by the
client or server.

The API lets an application control the behavior of a socket
through options. The set of options has expanded over time,
as usage has evolved. There are essentially three ways to
manipulate socket options:

1) The functions setsockopt and getsockopt pro-
vide access to the majority of available socket options.

2) The function fcntl is primarily used with non-
blocking and asynchronous I/O.

3) The function ioctl has traditionally been the way to
access implementation-dependent socket attributes.

The socket options accessed via setsockopt and
getsockopt are divided into two levels: The first level
are generic, i.e., non-protocol specific, options. For exam-
ple, the sizes of the socket send (SO_SNDBUF) and re-
ceive (SO_RCVBUF) buffers are generic socket options. The
second level comprises protocol-specific options such as those
that control the behavior of IP, UDP, and TCP. An example of
a well-known, second-level socket option is TCP_NODELAY,
which determines whether the Nagle algorithm [71] should be
enabled.

The deployment of the SCTP transport protocol [5] de-
manded changes to the socket API. In addition to the ser-
vices offered by TCP, SCTP supports both multi-homing (i.e.,
connections comprising several network paths) and multi-
streaming (i.e., several independent logical flows over a single
connection). These additions required extended versions of
several existing socket API functions and a new notification
mechanism to enable signaling of transport-level events to an
application, such as connection status changes. A good exam-
ple of how SCTP extended the socket API, is the extended
version of bind: The normal bind socket call only enables
for a communication endpoint to bind to a single IP address.
SCTP introduces the sctp_bindx socket call which lets an
application bind to several or all IP addresses on a host.

Since SCTP has its roots in the transport of critical tele-
phony signaling traffic, it had to be able to communicate
transport-level events to an application, such as connection
availability and remote operational errors. To ensure the SCTP
event notification is well aligned with the rest of the socket
API, events are enabled by a socket option: SCTP_EVENTS.
Once enabled, the SCTP stack sends events as a normal

Socket API extensions

Basic High-level

Application-oriented Resource-oriented

Msocket
[74]

Sockets++
[78]

Multi-Sockets
[77]

Socket Intents
[75, 76]

QoSockets
[79]

QSockets
[80]

Fig. 4. Extensions to the sockets API.

messages to the application. An application may distinguish
between event notifications and normal messages, by a flag in
event notification messages set to MSG_NOTIFICATION.

SCTP also extended the semantics of the socket API by
supporting two types of sockets: one-to-one and one-to-many.
A one-to-one socket resembles usage by TCP. A one-to-many
socket makes it possible for an application to manage several
SCTP connections via a single socket. This has advantages for
server applications that may use a one-to-many socket to avoid
the need to administer each client request through a separate
socket.

The example of SCTP has shown that incorporating a
transport with different techniques has required updates to
the current sockets API. It would seem reasonable to expect
similar changes may also be needed to support any additional
new transport (or technique). A significant drawback is that
this also requires any application that wishes to benefit from
using a new technique to be updated to use the new API.

B. More expressive APIs / Extensions to the socket API

Extensions to the sockets API have also been proposed that
change the way an application interacts with the transport
layer. These may be categorised according to the abstraction
level at which the underlying transport services are exposed
(Fig. 4). Some proposed extensions, which we call basic exten-
sions, only aim to remove perceived limitations and drawbacks
of the standard sockets API. For example Msocket [72] makes
it possible to have several implementations for each domain,
type, and protocol assignment. These proposals provide the
same exposure of the transport layer as the standard sockets
API.

In contrast, high-level extensions hide the implementation
of offered transport services from applications. These focus on
ways to allow an application to express its quality-of-service
(QoS) requirements to the transport layer. Examples include
Socket Intents [73], [74] and Multi-Sockets [75] High-level
extensions can be further divided into application-oriented and
resource-oriented extensions. Application-oriented extensions
let an application express its QoS requirements in terms of
application-dependent performance metrics or the character-
istics of the traffic it will generate. In contrast, resource-
oriented extensions focus on system-wide, network-oriented
performance metrics such as packet loss, re-ordering, bitrate,
or end-to-end delay. We now present each category of socket
API extension and provide examples within these categories.

1) Basic Extensions: If several protocol stacks are avail-
able, the standard sockets API does not enable an application
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to explicitly select the one to use. The Msocket [72] extension
removes this limitation by adding a stack parameter to the
socket call. In Unix systems, the stack parameter is a device
file. This does not have to be the case in other systems, and
could refer to a kernel module. Backward compatibility with
the standard sockets API is assured by the definition of so-
called default stacks: each protocol family is assigned a default
stack.

Sockets++ [76] is an object-oriented basic extension that
addresses a range of shortcomings with the sockets API. It
supports multipoint connections to enable several applications
to participate in the same connection. It also supports direct
forwarding allowing multimedia applications to request data
is directly forwarded from one stream to another. It seeks to
minimize parameters in socket calls, e.g., combining domain
and protocol parameters in the socket call, and to simplify
socket API options. Importantly, this extension also enables
applications to express their quality-of-service requirements.

2) High-level Extensions: Intentional extensions originated
in work for mobile devices with more than one available net-
work interface. It allows applications to inform the API about
the traffic they intend to send (e.g., whether it will be latency-
sensitive video conferencing traffic or throughput-dependent
file transfers). This information enables the transport layer
to select the most appropriate network interface, dividing the
responsibility for communication between the application and
the transport stack.

Intentional networking was first realized in Multi-
Sockets [75], allowing an application to use labels to com-
municate its intents. Labels provided qualitative rather than
quantitative information, e.g., to inform the API whether a
message unit belongs to an interactive or non-interactive traffic
flow, or whether it belongs to a flow that consumes little
or much capacity. Conceptually, a multi-socket multiplexes
several different labels across a single virtual connection, how-
ever, in practice, the proposal instantiated and used actual TCP
connections over one or several physical network interfaces.

Socket Intents [73], [74] is a successor to Multi-Sockets,
seeking to support multi-homed applications. Socket Intents
replaced the labels used in Multi-Sockets by augmenting the
sockets API with additional socket options. An implementation
of Socket Intents comprises three components: a wrapper
library over the standard sockets API, a policy module, and the
multi-access manager – a daemon that hosts the policy module.
Since creating a single policy that maps different traffic flows
to different network interfaces is, in general, not feasible, the
Socket Intents API was built as a generic framework with a
replaceable policy module.

Resource-oriented sockets API extensions offer communi-
cation between themselves and the application. For example,
QoSockets [77] enables an application to negotiate its quality-
of-service requirements with the transport layer, and for the
transport layer to signal violations of these requirements back
to the application. The requirements include loss rate, ordered
or unordered delivery, end-to-end delay, and jitter. Application-
and network-management functions were integrated by adding
an interface to a Management Information Base (MIB), and a
status interface for connections. These MIBs show how com-

munication resources are allocated and utilized, and enable an
application to detect and adapt to quality-of-service violations.

QSockets [78] is another resource-oriented sockets API
extension. Similar to QoSockets, QSockets also offers bidi-
rectional communication to the application, enabling applica-
tions to obtain detailed quality-of-service feedback. It uses an
extended socket API that adds a structure that contains the
QoS preferences. The QoS parameters may also be set on
a per-packet level by passing a structure to sendto calls,
allowing per-packet deadlines and the setting of other flags.
The API communicates with an in-kernel management module
to control an in-kernel scheduler. This exposes functionality
to the management module for managing scheduled packet
streams. A pluggable scheduling layer allows various QoS
scheduling algorithms.

Although no single approach has been adopted by the
community, this body of research has shown there are benefits
to enriching the transport API to express more than the
traditional socket API.

C. Transparent transport protocol selection
The current design of the socket API has a design that

focusses on specific support for each transport protocol, each
with different needs. Fairhurst et al. [79] provide a recent sur-
vey of the services provided by the range of IETF-standardised
transports. The present design of the API makes it difficult to
introduce any new protocol [80].

These limitations could be overcome by re-designing the
way that the API is used, e.g., by: using a protocol-independent
mechanism to set parameters; by describing application re-
quirements at a higher level of abstraction (similar to inten-
tional methods); and providing a service-oriented interface
between applications and the transport (where applications
describe the required services than the protocols to use).
The latter would allow transport protocol selection to be
dynamically handled at run-time, easing the introduction of
new and alternate protocols.

A prototype implementation [81] used a service-oriented
API to indicate a combination of inherent properties (reliabil-
ity, security, etc.) and qualitative properties (expressing tenden-
cies and preferences). The set of inherent transport properties
was derived by examining the key transport protocols (TCP/IP,
UDP/IP, RDP [82], RDP/IP, XTP [83], XTP/IP, SCTP/IP). Five
qualitative properties were also suggested (transmission delay,
flow setup delay, network resource usage, host resource usage,
and quality). A broker then matched the inherent properties
with application requirements to first identify the transport to
use, and then used the qualitative properties to optimize the
matching.

Welzl [84] identified deployment problems resulting from
the complexity of the different protocol APIs and proposed an
“Adaptation Layer” that hides protocol details and exposes a
common service-oriented interface. This allowed applications
to specify their requirements and characteristics. An adapta-
tion layer then sought to provide the best transport service
based on available transport protocols and the current network
environment. This adaptation layer could also tune protocol
parameters and provide additional functions, such as buffering.
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Welzl et al. [85] later derived a methodology for construct-
ing a service-oriented transport API. This started with a list
of all services provided by SCTP, DCCP and UDP-Lite, and
iteratively pruned redundant services or services considered
unnecessary, resulting in a list of 23 distinct transport services
composed from six different features. This led to a strawman
proposal for a protocol-independent version of the socket
API, where the selected transport services could be accessed
through their service number.

A similar proposal [86] expressed the desired service
through a set of requirements, such as packet boundary
preservation, authentication or maximum delays. Their adapted
socket API used a name similar to a URI [87] to identify the
communication peer, removing dependence on IP addresses.

There is a need to standardize any new service-oriented
API [84], to ensure that it can have significant impact and
becomes used by applications in future. This requires the
community of application developers, and transport developers
to reach consensus on the set of desirable interface features.
Recent IETF work within the Transport Services working
group (TAPS) [79], [88] provides a unique opportunity to
develop this sort of consensus.

D. Enhancing the API to allow evolution below the transport
layer

There is a long history of proposals to support commu-
nication between end systems and the network. Proposed
solutions can be divided into two broad classes according
to their scope: 1) solutions that facilitate middlebox traversal
for applications (discussed in § III-B), 2) solutions that fo-
cus on communicating information between the network and
the endpoints to improve application experience (signalling
of QoS requirements, QoS reservations, and indications of
capacity changes, of data corruption, of congestion, etc.).
However, there are also challenges to finding suitable, scalable,
secure and robust signaling mechanisms that can be deployed
across the Internet (e.g., [70], [89]–[91]). Finding appropriate
methods largely remain an area of research. One issue with
deploying mechanisms is that many methods require applica-
tions to indicate their needs and how they expect the network
to respond. The current socket API does not provide such
information, nor have applications typically been designed to
utilise such methods, and hence at present these are unlikely
to be widely deployed.

A higher-level transport API that places the responsibil-
ity for negotiating and using network signaling below the
transport API may encourage future applications to utilise
new methods as the stack and network introduce them. This
technique was adopted by some of the API proposals dis-
cussed [78] and could be enabled by the approaches being
proposed in [92].

V. DISCOVERY AND EXPLOITATION OF END-TO-END
CAPABILITIES

Some application-layer proposals provide limited sup-
port for negotiation of e.g. transport security for unicast,

connection-oriented application sessions [93], or transport pro-
tocol, port and IP address for multimedia sessions [94]. A more
generic approach is for end-points to use a negotiation protocol
to exchange protocol-stack information, and to agree on a
transport stack (i.e., transport and security protocols to be used,
and their options) [95]. Their proposal focused on connection-
oriented transports. Minimising latency, by reducing the num-
ber of RTTs needed for negotiation, requires changes to the
implementations of the transport protocols being negotiated.

In the absence of an explicit end-to-end signaling or a
negotiation protocol, the only way for an end-host to discover
and (implicitly) agree on the choice of protocol(s) is to
simultaneously try a set of candidate methods, and choose one
a method that works. This “test-and-select” approach, known
as happy eyeballs, has been proposed both for choosing be-
tween transports [96] and between versions of the IP protocol
[97]. To the best of our knowledge, only the latter has been
implemented in real systems (e.g., [98]), coupled with address-
selection algorithms such as [99]. Fig. 5 depicts a possible
variant of happy eyeballs for a client to discover SCTP support,
both at a server and along the path to the server. A drawback
of this kind of technique is it increases both the number of
packets sent, the server-side load and (potentially), the amount
of state created in middleboxes; hence, it does not scale well
with the number of candidates to try. For instance, testing for
native SCTP, SCTP-over-UDP and TCP, combined with both
IPv4 and IPv6, would in principle require testing six protocol
combinations (compared to two in the example). Moreover,
happy eyeballs requires careful design of timers, needed to
decide when to discard a trial for a given protocol choice. Also,
the sequence in which trials are attempted can be important,
to avoid systematic bias towards particular protocol choices.

It is important to consider the overhead in the design of a
happy eyeballs algorithm, especially the overhead in terms of
added latency for initiating a session. In general, any transport
signaling or feature discovery / negotiation mechanism may
incur either additional round-trip times (e.g., if connection
attempts are serialized) or waiting delay (e.g., due to waiting
for replies to two parallel connection requests). It is therefore
essential to cache results to speed-up subsequent trials. For
instance, prior knowledge that protocol choice X works with
destination D can be used to tune the testing process, by
e.g., slightly delaying trials with protocols other than X
[96]. Cached information can also inform the happy eyeballs
mechanism to give preference to certain choices, e.g., ones
expected to offer lower path latency [98].

VI. ENABLING USER-SPACE PROTOCOL STACKS

It is possible to run a transport as a user-space library, letting
applications use the transport in user-space, rather than the one
provided by an OS kernel. This can allow more portability and
deployability across multiple OS and hardware platforms. This
approach can enable easy introduction and ease testing of new
features and protocols (e.g., a simple user-space TCP library
(UTCP) used MultiStack [100]).

In many systems, privileges are needed to introduce a new
protocol and may not always be granted to the entity trying to
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Fig. 5. “Happy eyeballs” technique for the discovery of SCTP support, with SCTP being the preferred choice. The first handshake of the SCTP association
succeeds shortly after the TCP connection does, so the latter is aborted.

induce a new transport protocol. User-space transports do not
need root privileges on the host machine. However, the use of
user-space transports presents a range of challenges.

One challenge is that network I/O operations that originate
in user-space can incur higher latency compared to network
I/O operations handled in the kernel. MutiStack [100] offers
a solution that enhances commodity operating systems with
support for dedicated user-level network stacks. It can concur-
rently host a large number of independent stacks, and can fall
back to the kernel stack if necessary. MultiStack provides high
speed packet I/O at rates up to 10 Gb/s [100], by extending
two components: the netmap framework [101] and the VALE
software switch [102].

Other libraries can help achieve fast packet I/O in user-
space, such as the Data Plane Development Kit (DPDK) [103]
and PACKET MMAP [104]. DPDK [103] is a set of libraries
and drivers for fast packet processing mostly in Linux user-
space. However, DPDK is not a networking stack and does
not provide functions such as Layer-3 forwarding, IPsec, fire-
walling, etc. PACKET MMAP [104] seeks to provide efficient
raw packet transmission and reception in the Linux kernel
using a zero-copy mechanism with a configurable circular
buffer, mapped in user-space to minimize the number of
system calls.

In addition to user-space TCP [105], there is also a user-
space SCTP implementation for all major OS platforms [53]
using the FreeBSD kernel sources for SCTP. Since it is not
always possible to send data directly over native SCTP (e.g.,
because not all middleboxes can process SCTP packets), the
SCTP user-space implementation in [53] additionally supports
the option of encapsulating SCTP packets in UDP.

User-space SCTP [53] is implemented using raw sockets
in user-space. A raw socket receives or sends raw datagrams
(at OSI Layer 3). Whereas packet sockets receive or send raw
packets at the device driver level (OSI Layer 2). This allows
a user to implement protocol modules in user-space on top of
the physical layer (e.g. PACKET MMAP [104]).

Another technique that enables transport protocols to run
in user-space is to run the entire kernel (instead of only
the transport) as a user-space process, as in User-Mode
Linux (UML) [106]. This permits experimenting with new
transport protocols implemented in different Linux kernels
without interfering with the host Linux setup. UML provides a
virtual machine as a single file, potentially with more (virtual)

hardware/software resources than the actual host, and can
potentially provide limited access to host hardware. A similar
approach is followed by LibOS [107], which runs the kernel
as a library that can be called by an application. LibOS has
been used by NUSE [108] to provide a Linux network stack
for user-space applications.

VII. SUMMARY OF POINT SOLUTIONS

Table II recaps the taxonomy of issues and point solutions
to transport-layer ossification described in more detail in the
previous sections.

VIII. A WAY FORWARD: A TRANSPORT-LAYER
FRAMEWORK

The previous sections have shown that de-ossifying the
Internet transport layer to re-enable its evolution is a multi-
dimensional problem. This requires the enhancement of mul-
tiple components of the end-to-end communication. Several
point solutions have been proposed or are underway, each
aiming to address a specific aspect of the overall problem.
However, there has been little effective integration of tech-
niques that can produce an evolvable transport layer.

For instance, incorporating a new application-level transport
within the application’s code (e.g., QUIC) to enable new trans-
port services would inevitably require a negotiation service,
e.g., a negotiation protocol like the one described in [95] to
discover if the transport is supported by the remote peer (e.g., a
web server), accompanied with a fall-back strategy for the case
where the new transport is not supported2. Implementing more
advanced transport and network functions, such as dynamic
selection and configuration of a transport based on current
network state and QoS negotiation, would additionally require
the involvement of more components, such as a policy system,
measurement modules and network signaling mechanisms, that
need to interact with each other.

While various solutions could be partly implemented ac-
cording to certain application needs, this would inevitably
result in an application-specific and less flexible implementa-
tion, that is neither sufficiently general to support other types
of applications nor incrementally upgradable to support new
transport and network functions as they become available. This

2At the time of writing, the Chrome browser (version 46.0.2490.86) does
this by implementing Happy Eyeballs (see § V) between QUIC/UDP and TCP.
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TABLE II
SUMMARY OF MAIN ISSUES AND POINT SOLUTIONS TO INTERNET TRANSPORT-LAYER OSSIFICATION.

Type of problem Family of solutions Solution approach Examples of proposals

Middlebox-related
hindrances

Design of middlebox-proof
transports (§ II)

Extending TCP while guarding
against middlebox interference
(§ II-A)

MPTCP [12], [20], [21]
Tcpcrypt [22], [23]
Gentle Aggression [24]
Extending TCP’s option space [26]–[29]
Polyversal TCP [30]

Using widely deployed transports as
substrates (§ II-B)

Minion [35], [36]
Encapsulation of specific transport protocols
over UDP [48]–[50]
Generic encapsulation frameworks [51], [52]
Use of DTLS as a substrate [55]

Signaling for facilitating
middlebox traversal (§ III)

Implicit middlebox control (§ III-A)

STUN [58]
TURN [59], [62]
UDP hole punching [14]
NATBLASTER [61]
ICE [57], [60]

Explicit middlebox control (§ III-B)

PCP [64]
MIDCOM [66]
NSIS Signaling Layer Protocol [67]
SPUD [70]

API ossification
Enhancing the API between
the applications and the
transport layer (§ IV)

More expressive APIs / Extensions to
the socket API (§ IV-B)

Msocket [72]
Sockets++ [76]
Multi-Sockets [75]
Socket Intents [73], [74]
QoSockets [77]
Qsockets [78]

Transparent transport protocol
selection (§ IV-C)

Reuther et al. [81]
Welzl [84]
Welzl et al. [85]
Siddiqui and Mueller [86]
TAPS [79], [88]

Lack of local knowledge
about path- and remote
end-host support

Discovery and exploitation of
end-to-end capabilities (§ V)

Explicit negotiation protocols
Rose [93]
Rosenberg and Schulzrinne [94]
Ford and Iyengar [95]

Implicit discovery / agreement Happy eyeballs [96], [97]

End-host deployment
issues

Enabling user-space protocol
stacks (§ VI)

Transport protocols implemented in
user-level libraries

User-space TCP [105]
User-space SCTP [53]
MultiStack [100]

Enabling fast packet I/O in user-space
DPDK [103]
PACKET MMAP [104]

Running an OS kernel in user-space
User-Mode Linux [106]
LibOS [107]

would need considerable effort from application developers to
re-implement common functions or services that might not be
interoperable or efficient. Examples include QUIC in Chrome,
RTMFP [42] in Adobe Flash Player, and proprietary protocols
in Skype [109] and the WebRTC framework [110].

We argue that a truly evolvable Internet transport archi-
tecture requires a necessary step to design and develop a
comprehensive and evolutive transport layer framework that
can facilitate integration and cooperation of transport layer
solutions in an application-independent and flexible way.

This would relieve application developers from the burden

of changing the application code to introduce new transport
or network services and functions, breaking the vicious circle
that hampers evolution.

The remainder of this section motivates the requirements
for such a framework.

A. Requirements for an evolutive transport layer framework

Based on the discussion in previous sections, we identify
a series of requirements that an evolutive transport layer
framework should fulfill. We summarize them in five general
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categories: 1) API flexibility, 2) Deployability, 3) Extensibility,
4) Guided parameter value selection, and 5) Scalability. We
elaborate below on these requirements.

1) API flexibility: As discussed in Section IV, the ossifica-
tion of the current transport API is a key obstacle that needs to
be overcome. Applications using the framework should only
interact with it via the API provided by the framework. This
API should be able to decouple applications from a priori
decisions on underlying protocols and functions. It should also
allow to use the framework in the future by providing a simple
way for porting existing applications to it. To this end, the API
must be flexible, in the sense of the following requirements:

a) Backward compatibility: The API provided by the
framework needs to provide backward compatibility to enable
evolution from previous versions of the framework without
affecting the applications that use the framework.

b) Support of low level configuration: The classical
socket API requires detailed usage of the transport protocol
stack, where the network and transport protocol need to
be specified, and protocol-specific parameters chosen (when
values different other than the defaults are needed). The
framework should continue to permit this detailed level of
configuration.

c) Support of high level configuration: The framework
should allow configuration at a high level of abstraction.
Mechanisms should describe the needs of an application in
a more generic way than required by the classic socket
API. Possible needs include message-orientation, preservation
of message order, reliability, low latency, mobility support,
relative priorities and security features.

An application may assume that it receives the requested
service, but should not implicitly receive additional services.
This allows the framework to make any further decisions
necessary to establish optimal communication with the peer
endpoint. As the framework evolves, different choices might
lead to a better service without the need to change the
application. Finally, multiple levels of abstraction need to be
supported.

Recent advances in the development of more expressive,
high-level, extensions to the socket API (e.g., Socket Intents
and QSockets, § IV-B), and the important ongoing standard-
ization effort of the IETF TAPS working group can provide a
basis towards satisfying this requirement.

d) Comprehensibility: The framework must make low
level information available to the application and to reveal
the decision processes, so that applications know the concrete
choices that were made to fulfill the requested abstract require-
ments. QoS feedback, as provided by QoSockets and QSockets
(§ IV-B2), is an example of how such low level information
could be of interest to an application.

2) Deployability: The framework should enable fast seam-
less deployment with as little disruption as possible. The
deployability goals translate into the following requirements:

a) Application focus: The evolutionary character of the
framework requires support of existing host operating systems.
It must be installable, usable and upgradable without specific
privileges. This enables the speed of the evolution of the

framework to be independent of the speed that operating
systems are updated.

b) Host operating system feature tolerance: The frame-
work should not only make use of protocols and features
available on the host operating system, but allow integration of
additional protocols (e,g., SCTP or DCCP) and features (e.g.,
caching network or transport information).

To enable easy deployment of new transport protocols
and/or transport protocol components, solutions that enable the
deployment of user space transport stacks should be supported
by the framework. Examples include support for application-
level transports (such as uTP and QUIC, § II-B), UDP encap-
sulation schemes (such as SCTP/UDP encapsulation and GUT,
§ II-B), and user space implementations of native transports
(such as SCTP and TCP, § VI).

c) Peer feature tolerance: It can not be assumed either
that all endpoints use the new framework. Even when the
framework is supported by all endpoints, it must not be
assumed that they use the same version of the framework.
This allows for incremental deployment, possibly at the cost
of providing less benefit. Similar robustness is required for the
protocols and mechanisms used to realize the transport service.

A method that allows implicit or explicit discovery of the
set of protocols/mechanisms supported by a remote endpoint
could allow the framework to leverage the best common set
of available features. Examples of such solutions are the
negotiation protocol described in [95] and the happy eyeballs
mechanisms (§ V). Feature negotiation and fallback mecha-
nisms can be incorporated within a protocol or a mechanism
itself, such as the options mechanism for negotiating TCP
extensions and the fallback scheme of MPTCP (§ II-A).

d) Network feature tolerance: The ability to use the
framework must not depend on the network support for
specific features (e.g., quality of service mechanisms or mid-
dlebox interaction), but may utilize these when they are found
to be supported.

Support for middlebox-proof transports (§ II) and mech-
anisms for implicit middlebox control (§ III-A) can be of
great value for making the framework independent of the
features supported by middleboxes. Additionally, support for
“looser” network signaling mechanisms (e.g., SPUD, § III-B)
for interacting with network devices can enable a “best effort”
use of available network features.

3) Extensibility: The framework must be able to support
seamless, independent evolution of the different components:

a) Support of framework evolution: An evolutionary
framework must permit addition of new protocols and features
in the future.

b) Support of operating system evolution: The interface
between the framework and the operating system may change
over time to improve the service provided by the framework,
including additional protocols and features. This allows mov-
ing implementations from the framework to the host operating
systems and vice versa as they evolve.

c) Support of network evolution: Some middleboxes may
allow an endpoint to signal its needs. Applications should
not rely on signaling, but can benefit when this is available,
possibly increasing the chance that a path can be used (e.g.,

D1.2
First Version of Services and APIs

Public
Rev. 1.0/ March 1, 2016

43 of 76 Project no. 644334



14

by explicitly controlling middlebox traversal, § III-B), or even
enabling features (such as QoS support) that can benefit the
transport (e.g., through the signaling of advisory metadata,
§ IV-D). It should be assumed that the available methods for
interacting with the network (and middleboxes) will evolve
over time. The architecture of the framework must therefore
allow applications using the framework to benefit from this
evolution.

4) Guided parameter value selection: Current transport and
network stacks require explicit parameter value selection. For
example, an application may choose IPv4 or IPv6 and select
DCCP, SCTP, TCP, UDP-Lite or UDP. Furthermore, parameter
values can be specified by explicit socket or protocol level
socket options. The framework should be able to combine
network-wide and local information to select the appropriate
parameter values that make the best of available features for
satisfying application requirements. Such guided parameter
value selection corresponds to the following requirements:

a) Derivation of parameter values: The framework must
map high-level requirements provided by the application to
the low level parameter values to be used. This parameter
selection should be guided by the requirements provided by
each application to result in selection of the interfaces to be
used, the network protocol, the transport protocol, and the
setting of parameter values at each layer. Examples include
the policy-based interface selection system of Socket Intents
(§ IV-B2) and the run-time service broker in [81] (§ IV-C). The
IETF TAPS Working Group is seeking to provide guidance on
choosing among available protocols and mechanisms.

b) Dependency on local tools: If possible, tools included
in an operating system (for example, link status supervision
tools) should provide useful information to the framework
when making the decisions and parameter value selections.

c) Dependency on network and peer: Any decision to
use a particular protocol must be based on the set of protocols
supported by the local and remote endpoints. A prerequisite
to using a protocol is that it can communicate over the path
between the endpoints, including any middleboxes employed
along the path. The framework should support mechanisms for
discovering characteristics of the end-to-end path and/or the
remote endpoint, such as happy eyeballs, end-to-end signaling
and negotiation protocols (§ V).

d) Ability to use time-dependent path information: The
final decision to use a candidate protocol can be based on his-
torical information such as whether a protocol or feature was
previously supported on the path, but needs to also consider
that path characteristics can change over both long time-scales
(e.g., due to upgrades or route changes) and short time-scales
(due to load balancing over alternate paths, wireless links,
etc.). Use of historical information will require components for
caching path properties (e.g., caching happy eyeballs results,
§ V) and which will be able to efficiently store information
with diverse lifetime requirements.

e) Agnostic to application protocol: Testing and discov-
ery must be done by the framework and must not require any
change to, or specific support by, application protocols.

5) Scalability: The framework must be scalable in a variety
of ways:

a) Traffic volume: The framework must limit the impact
on CPU load and scale to support a high volume of user traffic
(e.g., to support high-speed interfaces). Hardware support
should be leveraged whenever possible. At the same time, the
framework must not by itself produce control traffic (signaling)
that limits scalability.

b) Number of peers: The number of transport associa-
tions needed (for example TCP connections or SCTP associa-
tions) depend on the use case. The framework must efficiently
support a high number of simultaneous transport associations.

c) Size of feature set: Finally, the framework needs to
be able to support a variety of combinations of protocols,
parameter settings and network interactions. The selection
process must therefore be able to select from a large set
of possibilities, while providing an acceptable communication
setup time.

IX. FUTURE RESEARCH DIRECTIONS

To conclude, we identify ongoing and forthcoming research
efforts that we expect will lead to further developments
towards de-ossifying the transport layer.

Considering the approaches discussed so far, it seems that
the ossification problem has two main root causes: 1) middle-
boxes that examine and/or manipulate the contents of packets
beyond the IP header make it hard to deploy protocols that
these middleboxes do not yet know; 2) the API that is exposed
by the socket API ties applications (or the middleware or
library that these applications are based upon) to a specific
protocol choice. Both sub-problems have been addressed in
various ways by research proposals. Unfortunately, some of
these proposals are not new, yet it seems that these solutions
have had little to no impact on the Internet: the transport layer
still appears to consist of only TCP and UDP, often even
further constrained to specific port numbers [8]. If anything,
the situation seems to have worsened over the years.

There is however some reason for hope that we may be
reaching a turning point. At the time of writing, several
initiatives are focussing on making such a change possible;
these initiatives point at the different open research directions
in this space:

• The IETF TAPS Working Group seeks to specify how
applications could specify their transport requirements,
instead of being tied to a specific protocol, and how a
transport system based on such requirements specifica-
tions could be constructed3.

• The IP Stack Evolution Program within the Internet Ar-
chitecture Board (IAB) provides architectural guidance,
and a point of coordination for work at the architectural
level to improve the present situation of ossification in
the Internet protocol stack4.

• Current activity around the SPUD protocol at the IETF5

is striving for better cooperation between end-points and
middleboxes in a context of increasing use of encryption.

3https://tools.ietf.org/wg/taps/charters
4https://www.iab.org/activities/programs/ip-stack-evolution-program/
5https://www.ietf.org/mailman/listinfo/spud
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• A proposal to create a “Measurement and Analysis for
Protocols (MAP)” IRTF Research Group is expected
to serve as a forum to exchange insights derived from
measuring the Internet, including the possibly to design
protocols based on measured path characteristics, rather
than conservatively designing just for the worse case.

• The European collaborative research project “NEAT”
plans to implement a transport system, following the
requirements detailed in § VIII, that will allow transport
decisions to be made and verified at run-time, instead of
design time, based on understanding application needs
and the available transport protocols—this is key to
breaking the vicious circle and enabling deployment of
new transports6.

• The European collaborative research project “MAMI” is
set to perform a large-scale assessment of middlebox
behavior, and to use this to inform development of an
architecture for middlebox cooperation7.
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   This document is subject to BCP 78  and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   ( http://trustee.ietf.org/license-info ) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4 .e of
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   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Terminology

   Transport Service Feature:  a specific end-to-end feature that a
      transport service provides to its clients.  Examples include
      confidentiality, reliable delivery, ordered delivery, message-
      versus-stream orientation, etc.
   Transport Service:  a set of transport service features, without an
      association to any given framing protocol, which provides a
      complete service to an application.
   Transport Protocol:  an implementation that provides one or more
      different transport services using a specific framing and header
      format on the wire.
   Transport Protocol Component:  an implementation of a transport
      service feature within a protocol.
   Transport Service Instance:  an arrangement of transport protocols
      with a selected set of features and configuration parameters that
      implements a single transport service, e.g., a protocol stack (RTP
      over UDP).
   Application:  an entity that uses the transport layer for end-to-end
      delivery of data across the network (this may also be an upper
      layer protocol or tunnel encapsulation).
   Endpoint:  an entity that communicates with one or more other
      endpoints using a transport protocol.
   Connection:  shared state of two or more endpoints that persists
      across messages that are transmitted between these endpoints.
   Primitive:  a function call that is used to locally communicate
      between an application and a transport endpoint and is related to
      one or more Transport Service Features.
   Parameter:  a value passed between an application and a transport
      protocol by a primitive.
   Socket:  the combination of a destination IP address and a
      destination port number.

2.  Introduction

   This document presents defined interactions between transport
   protocols and applications in the form of ’primitives’ (function
   calls).  Primitives can be invoked by an application or a transport
   protocol; the latter type is called an "event".  The list of
   transport service features and primitives in this document is
   strictly based on the parts of protocol specifications that relate to
   what the protocol provides to an application using it and how the
   application interacts with it.  It does not cover parts of a protocol
   that are explicitly stated as optional to implement.

   The document presents a three-pass process to arrive at a list of
   transport service features.  In the first pass, the relevant RFC text
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   is discussed per protocol.  In the second pass, this discussion is
   used to derive a list of primitives that are uniformly categorized
   across protocols.  Here, an attempt is made to present or -- where
   text describing primitives does not yet exist -- construct primitives
   in a slightly generalized form to highlight similarities.  This is,
   for example, achieved by renaming primitives of protocols or by
   avoiding a strict 1:1-mapping between the primitives in the protocol
   specification and primitives in the list.  Finally, the third pass
   presents transport service features based on pass 2, identifying
   which protocols implement them.

   In the list resulting from the second pass, some transport service
   features are missing because they are implicit in some protocols, and
   they only become explicit when we consider the superset of all
   features offered by all protocols.  For example, TCP’s reliability
   includes integrity via a checksum, but we have to include a protocol
   like UDP-Lite as specified in [ RFC3828] (which has a configurable
   checksum) in the list before we can consider an always-on checksum as
   a transport service feature.  Similar arguments apply to other
   protocol functions (e.g. congestion control).  The complete list of
   features across all protocols is therefore only available after pass
   3.

   This document discusses unicast transport protocols.  [AUTHOR’S NOTE:
   we skip "congestion control mechanisms" for now.  This simplifies the
   discussion; the congestion control mechanisms part is about LEDBAT,
   which should be easy to add later.]  Transport protocols provide
   communication between processes that operate on network endpoints,
   which means that they allow for multiplexing of communication between
   the same IP addresses, and normally this multiplexing is achieved
   using port numbers.  Port multiplexing is therefore assumed to be
   always provided and not discussed in this document.

   Some protocols are connection-oriented.  Connection-oriented
   protocols often use an initial call to a specific transport primitive
   to open a connection before communication can progress, and require
   communication to be explicitly terminated by issuing another call to
   a transport primitive (usually called "close").  A "connection" is
   the common state that some transport primitives refer to, e.g., to
   adjust general configuration settings.  Connection establishment,
   maintenance and termination are therefore used to categorize
   transport primitives of connection-oriented transport protocols in
   pass 2 and pass 3.

3.  Pass 1

   This first iteration summarizes the relevant text parts of the RFCs
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   describing the protocols, focusing on what each transport protocol
   provides to the application and how it is used (abstract API
   descriptions, where they are available).

3.1 .  Primitives Provided by TCP

   [RFC0793] states: "The Transmission Control Protocol (TCP) is
   intended for use as a highly reliable host-to-host protocol between
   hosts in packet-switched computer communication networks, and in
   interconnected systems of such networks".  Section 3.8 in [RFC0793]
   further specifies the interaction with the application by listing
   several transport primitives.  It is also assumed that an Operating
   System provides a means for TCP to asynchronously signal the
   application; the primitives representing such signals are called
   ’events’ in this section.  This section describes the relevant
   primitives.

   open:  this is either active or passive, to initiate a connection or
      listen for incoming connections.  All other primitives are
      associated with a specific connection, which is assumed to first
      have been opened.  An active open call contains a socket.  A
      passive open call with a socket waits for a particular connection;
      alternatively, a passive open call can leave the socket
      unspecified to accept any incoming connection.  A fully specified
      passive call can later be made active by calling ’send’.
      Optionally, a timeout can be specified, after which TCP will abort
      the connection if data has not been successfully delivered to the
      destination (else a default timeout value is used).  [ RFC1122]
      describes a procedure for aborting the connection that must be
      used to avoid excessive retransmissions, and states that an
      application must be able to control the threshold used to
      determine the condition for aborting -- and that this threshold
      may be measured in time units or as a count of retransmission.
      This indicates that the timeout could also be specified as a count
      of retransmission.

      Also optional, for multihomed hosts, the local IP address can be
      provided [ RFC1122].  If it is not provided, a default choice will
      be made in case of active open calls.  A passive open call will
      await incoming connection requests to all local addresses and then
      maintain usage of the local IP address where the incoming
      connection request has arrived.  Finally, the ’options’ parameter
      is explained in [ RFC1122] to allow the application to specify IP
      options such as source route, record route, or timestamp.  It is
      not stated on which segments of a connection these options should
      be applied, but probably all segments, as this is also stated in a
      specification given for the usage of source route ( section 4.2.3.8
      of [RFC1122] ).  Source route is the only non-optional IP option in
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      this parameter, allowing an application to specify a source route
      when it actively opens a TCP connection.

   send:  this is the primitive that an application uses to give the
      local TCP transport endpoint a number of bytes that TCP should
      reliably send to the other side of the connection.  The URGENT
      flag, if set, states that the data handed over by this send call
      is urgent and this urgency should be indicated to the receiving
      process in case the receiving application has not yet consumed all
      non-urgent data preceding it.  An optional timeout parameter can
      be provided that updates the connection’s timeout (see ’open’).

   receive:  This primitive allocates a receiving buffer for a provided
      number of bytes.  It returns the number of received bytes provided
      in the buffer when these bytes have been received and written into
      the buffer by TCP.  The application is informed of urgent data via
      an URGENT flag: if it is on, there is urgent data.  If it is off,
      there is no urgent data or this call to ’receive’ has returned all
      the urgent data.

   close:  This primitive closes one side of a connection.  It is
      semantically equivalent to "I have no more data to send" but does
      not mean "I will not receive any more", as the other side may
      still have data to send.  This call reliably delivers any data
      that has already been given to TCP (and if that fails, ’close’
      becomes ’abort’).

   abort:  This primitive causes all pending ’send’ and ’receive’ calls
      to be aborted.  A TCP RESET message is sent to the TCP endpoint on
      the other side of the connection [ RFC0793].

   close event:  TCP uses this primitive to inform an application that
      the application on the other side has called the ’close’
      primitive, so the local application can also issue a ’close’ and
      terminate the connection gracefully.  See [RFC0793], Section 3.5 .

   abort event:  When TCP aborts a connection upon receiving a "Reset"
      from the peer, it "advises the user and goes to the CLOSED state."
      See [RFC0793], Section 3.4 .

   USER TIMEOUT event:  This event, described in Section 3.9 of
      [RFC0793] , is executed when the user timeout expires (see ’open’).
      All queues are flushed and the application is informed that the
      connection had to be aborted due to user timeout.
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   ERROR_REPORT event:  This event, described in Section 4.2.4.1 of
      [RFC1122] , informs the application of "soft errors" that can be
      safely ignored [ RFC5461], including the arrival of an ICMP error
      message or excessive retransmissions (reaching a threshold below
      the threshold where the connection is aborted).

   Type-of-Service:  Section 4.2.4.2 of [RFC1122]  states that the
      application layer MUST be able to specify the Type-of-Service
      (TOS) for segments that are sent on a connection.  The application
      should be able to change the TOS during the connection lifetime,
      and the TOS value should be passed to the IP layer unchanged.
      Since then the TOS field has been redefined.  A part of the field
      has been assigned to ECN [ RFC3168] and the six most significant
      bits have been assigned to carry the DiffServ CodePoint, DSField
      [ RFC3260].  Staying with the intention behind the application’s
      ability to specify the "Type of Service", this should probably be
      interpreted to mean the value in the DSField, which is the
      Differentiated Services Codepoint (DSCP).

   Nagle:  The Nagle algorithm, described in Section 4.2.3.4 of
      [RFC1122] , delays sending data for some time to increase the
      likelihood of sending a full-sized segment.  An application can
      disable the Nagle algorithm for an individual connection.

   User Timeout Option:  The User Timeout Option (UTO) [ RFC5482] allows
      one end of a TCP connection to advertise its current user timeout
      value so that the other end of the TCP connection can adapt its
      own user timeout accordingly.  In addition to the configurable
      value of the User Timeout (see ’send’), [ RFC5482] introduces three
      per-connection state variables that an application can adjust to
      control the operation of the User Timeout Option (UTO): ADV_UTO is
      the value of the UTO advertised to the remote TCP peer (default:
      system-wide default user timeout); ENABLED (default false) is a
      boolean-type flag that controls whether the UTO option is enabled
      for a connection.  This applies to both sending and receiving.
      CHANGEABLE is a boolean-type flag (default true) that controls
      whether the user timeout may be changed based on a UTO option
      received from the other end of the connection.  CHANGEABLE becomes
      false when an application explicitly sets the user timeout (see
      ’send’).

3.1.1 .  Excluded Primitives

   The ’open’ primitive specified in [ RFC0793] can be handed optional
   Precedence or security/compartment information according to
   [ RFC0793], but this was not included here because it is mostly
   irrelevant today, as explained in [ RFC7414].
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   The ’status’ primitive was not included because [ RFC0793] describes
   this primitive as "implementation dependent" and states that it
   "could be excluded without adverse effect".  Moreover, while a data
   block containing specific information is described, it is also stated
   that not all of this information may always be available.  The ’send’
   primitive described in [ RFC0793] includes an optional PUSH flag
   which, if set, requires data to be promptly transmitted to the
   receiver without delay; the ’receive’ primitive described in
   [ RFC0793] can (under some conditions) yield the status of the PUSH
   flag.  Because PUSH functionality is made optional to implement for
   both the ’send’ and ’receive’ primitives in [ RFC1122], this
   functionality is not included here.  [ RFC1122] also introduces keep-
   alives to TCP, but these are optional to implement and hence not
   considered here.  [ RFC1122] describes that "some TCP implementations
   have included a FLUSH call", indicating that this call is also
   optional to implement.  It is therefore not considered here.

3.2 .  Primitives Provided by SCTP

   Section 1.1 of [RFC4960]  lists limitations of TCP that SCTP removes.
   Three of the four mentioned limitations directly translate into a
   transport service features that are visible to an application using
   SCTP: 1) it allows for preservation of message delineations; 2) these
   messages, while reliably transferred, do not require to be in order
   unless the application wants it; 3) multi-homing is supported.  In
   SCTP, connections are called "association" and they can be between
   not only two (as in TCP) but multiple addresses at each endpoint.

   Section 10 of [RFC4960]  further specifies the interaction with the
   application (which RFC [ RFC4960] calls the "Upper Layer Protocol"
   (ULP)).  It is assumed that the Operating System provides a means for
   SCTP to asynchronously signal the application; the primitives
   representing such signals are called ’events’ in this section.  Here,
   we describe the relevant primitives.

   Initialize:  Initialize creates a local SCTP instance that it binds
      to a set of local addresses (and, if provided, port number).
      Initialize needs to be called only once per set of local
      addresses.

   Associate:  This creates an association (the SCTP equivalent of a
      connection) between the local SCTP instance and a remote SCTP
      instance.  Most primitives are associated with a specific
      association, which is assumed to first have been created.
      Associate can return a list of destination transport addresses so
      that multiple paths can later be used.  One of the returned
      sockets will be selected by the local endpoint as default primary
      path for sending SCTP packets to this peer, but this choice can be
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      changed by the application using the list of destination
      addresses.  Associate is also given the number of outgoing streams
      to request and optionally returns the number of outgoing streams
      negotiated.

   Send:  This sends a message of a certain length in bytes over an
      association.  A number can be provided to later refer to the
      correct message when reporting an error, and a stream id is
      provided to specify the stream to be used inside an association
      (we consider this as a mandatory parameter here for simplicity: if
      not provided, the stream id defaults to 0).  An optional maximum
      life time can specify the time after which the message should be
      discarded rather than sent.  A choice (advisory, i.e. not
      guaranteed) of the preferred path can be made by providing a
      socket, and the message can be delivered out-of-order if the
      unordered flag is set.  Another advisory flag indicates whether
      the application prefers to avoid bundling user data with other
      outbound DATA chunks (i.e., in the same packet).  A payload
      protocol-id can be provided to pass a value that indicates the
      type of payload protocol data to the peer.

   Receive:  Messages are received from an association, and optionally a
      stream within the association, with their size returned.  The
      application is notified of the availability of data via a DATA
      ARRIVE notification.  If the sender has included a payload
      protocol-id, this value is also returned.  If the received message
      is only a partial delivery of a whole message, a partial flag will
      indicate so, in which case the stream id and a stream sequence
      number are provided to the application.

   Shutdown:  This primitive gracefully closes an association, reliably
      delivering any data that has already been handed over to SCTP.  A
      return code informs about success or failure of this procedure.

   Abort:  This ungracefully closes an association, by discarding any
      locally queued data and informing the peer that the association
      was aborted.  Optionally, an abort reason to be passed to the peer
      may be provided by the application.  A return code informs about
      success or failure of this procedure.

   Change Heartbeat / Request Heartbeat:  This allows the application to
      enable/disable heartbeats and optionally specify a heartbeat
      frequency as well as requesting a single heartbeat to be carried
      out upon a function call, with a notification about success or
      failure of transmitting the HEARTBEAT chunk to the destination.
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   Set Protocol Parameters:  This allows to set values for protocol
      parameters per association; for some parameters, a setting can be
      made per socket.  The set listed in [ RFC4960] is: RTO.Initial;
      RTO.Min; RTO.Max; Max.Burst; RTO.Alpha; RTO.Beta;
      Valid.Cookie.Life; Association.Max.Retrans; Path.Max.Retrans;
      Max.Init.Retransmits; HB.interval; HB.Max.Burst.

   Set Primary:  This allows to set a new primary default path for an
      association by providing a socket.  Optionally, a default source
      address to be used in IP datagrams can be provided.

   Status:  The ’Status’ primitive returns a data block with information
      about a specified association, containing: association connection
      state; socket list; destination transport address reachability
      states; current receiver window size; current congestion window
      sizes; number of unacknowledged DATA chunks; number of DATA chunks
      pending receipt; primary path; most recent SRTT on primary path;
      RTO on primary path; SRTT and RTO on other destination addresses.

   COMMUNICATION UP notification:  When a lost communication to an
      endpoint is restored or when SCTP becomes ready to send or receive
      user messages, this notification informs the application process
      about the affected association, the type of event that has
      occurred, the complete set of sockets of the peer, the maximum
      number of allowed streams and the inbound stream count (the number
      of streams the peer endpoint has requested).

   DATA ARRIVE notification:  When a message is ready to be retrieved
      via the Receive primitive, the application is informed by this
      notification.

   SEND FAILURE notification / Receive Unsent Message / Receive
   Unacknowledged Message:  When a message cannot be delivered via an
      association, the sender can be informed about it and learn whether
      the message has just not been acknowledged or (e.g. in case of
      lifetime expiry) if it has not even been sent.

   NETWORK STATUS CHANGE notification:  The NETWORK STATUS CHANGE
      notification informs the application about a socket becoming
      active/inactive.

   COMMUNICATION LOST notification:  When SCTP loses communication to an
      endpoint (e.g. via Heartbeats or excessive retransmission) or
      detects an abort, this notification informs the application
      process of the affected association and the type of event (failure
      OR termination in response to a shutdown or abort request).
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   SHUTDOWN COMPLETE notification:  When SCTP completes the shutdown
      procedures, this notification is passed to the upper layer,
      informing it about the affected assocation.

3.2.1 .  Excluded Primitives

   The ’Receive’ primitive can return certain additional information,
   but this is optional to implement and therefore not considered.  With
   a COMMUNICATION LOST notification, some more information may
   optionally be passed to the application (e.g., identification to
   retrieve unsent and unacknowledged data).  SCTP "can invoke" a
   COMMUNICATION ERROR notification and "may send" a RESTART
   notification, making these two notifications optional to implement.
   The list provided under ’Status’ includes "etc", indicating that more
   information could be provided.  The primitive ’Get SRTT Report’
   returns information that is included in the information that ’Status’
   provides and is therefore not discussed.  Similarly, ’Set Failure
   Threshold’ sets only one out of various possible parameters included
   in ’Set Protocol Parameters’.  The ’Destroy SCTP Instance’ API
   function was excluded: it erases the SCTP instance that was created
   by ’Initialize’, but is not a Primitive as defined in this document
   because it does not relate to a Transport Service Feature.

4.  Pass 2

   This pass categorizes the primitives from pass 1 based on whether
   they relate to a connection or to data transmission.  Primitives are
   presented following the nomenclature:
   "CATEGORY.[SUBCATEGORY].PRIMITIVENAME.PROTOCOL".  A connection is a
   general protocol-independent concept and refers to, e.g., TCP
   connections (identifiable by a unique pair of IP addresses and TCP
   port numbers) as well as SCTP associations (identifiable by multiple
   IP address and port number pairs).

   Some minor details are omitted for the sake of generalization --
   e.g., SCTP’s ’close’ [ RFC4960] returns success or failure, whereas
   this is not described in the same way for TCP in [ RFC0793], but this
   detail plays no significant role for the primitives provided by
   either TCP or SCTP.

   The TCP ’send’ and ’receive’ primitives include usage of an "URGENT"
   mechanism.  This mechanism is required to implement the "synch
   signal" used by telnet [ RFC0854], but SHOULD NOT be used by new
   applications [ RFC6093].  Because pass 2 is meant as a basis for the
   creation of TAPS systems, the "URGENT" mechanism is excluded.  This
   also concerns the notification "Urgent pointer advance" in the
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   ERROR_REPORT described in Section 4.2.4.1 of [RFC1122] .

4.1 .  CONNECTION Related Primitives

   ESTABLISHMENT:
   Active creation of a connection from one transport endpoint to one or
   more transport endpoints.

   o  CONNECT.TCP:
      Pass 1 primitive / event: ’open’ (active) or ’open’ (passive) with
      socket, followed by ’send’
      Parameters: 1 local IP address (optional); 1 destination transport
      address (for active open; else the socket and the local IP address
      of the succeeding incoming connection request will be maintained);
      timeout (optional); options (optional)
      Comments: If the local IP address is not provided, a default
      choice will automatically be made.  The timeout can also be a
      retransmission count.  The options are IP options to be used on
      all segments of the connection.  At least the Source Route option
      is mandatory for TCP to provide.

   o  CONNECT.SCTP:
      Pass 1 primitive / event: ’initialize’, followed by ’associate’
      Parameters: list of local SCTP port number / IP address pairs
      (initialize); 1 socket; outbound stream count
      Returns: socket list
      Comments: ’initialize’ needs to be called only once per list of
      local SCTP port number / IP address pairs.  One socket will
      automatically be chosen; it can later be changed in MAINTENANCE.

   AVAILABILITY:
   Preparing to receive incoming connection requests.

   o  LISTEN.TCP:
      Pass 1 primitive / event: ’open’ (passive)
      Parameters: 1 local IP address (optional); 1 socket (optional);
      timeout (optional)
      Comments: if the socket and/or local IP address is provided, this
      waits for incoming connections from only and/or to only the
      provided address.  Else this waits for incoming connections
      without this / these constraint(s).  ESTABLISHMENT can later be
      performed with ’send’.

   o  LISTEN.SCTP:
      Pass 1 primitive / event: ’initialize’, followed by ’COMMUNICATION
      UP’ notification
      Parameters: list of local SCTP port number / IP address pairs
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      (initialize)
      Returns: socket list; outbound stream count; inbound stream count
      Comments: initialize needs to be called only once per list of
      local SCTP port number / IP address pairs.  COMMUNICATION UP can
      also follow a COMMUNICATION LOST notification, indicating that the
      lost communication is restored.

   MAINTENANCE:
   Adjustments made to an open connection, or notifications about it.
   These are out-of-band messages to the protocol that can be issued at
   any time, at least after a connection has been established and before
   it has been terminated (with one exception: CHANGE-TIMEOUT.TCP can
   only be issued when DATA.SEND.TCP is called).

   o  CHANGE-TIMEOUT.TCP:
      Pass 1 primitive / event: ’send’ combined with unspecified control
      of per-connection state variables
      Parameters: timeout value (optional); ADV_UTO (optional); boolean
      UTO_ENABLED (optional, default false); boolean CHANGEABLE
      (optional, default true)
      Comments: when sending data, an application can adjust the
      connection’s timeout value (time after which the connection will
      be aborted if data could not be delivered).  If UTO_ENABLED is
      true, the user timeout value (or, if provided, the value ADV_UTO)
      will be advertised for the TCP on the other side of the connection
      to adapt its own user timeout accordingly.  UTO_ENABLED controls
      whether the UTO option is enabled for a connection.  This applies
      to both sending and receiving.  CHANGEABLE controls whether the
      user timeout may be changed based on a UTO option received from
      the other end of the connection; it becomes false when ’timeout
      value’ is used.

   o  CHANGE-TIMEOUT.SCTP:
      Pass 1 primitive / event: ’Change HeartBeat’ combined with ’Set
      Protocol Parameters’
      Parameters: ’Change HeartBeat’: heartbeat frequency; ’Set Protocol
      Parameters’: Association.Max.Retrans (whole association) or
      Path.Max.Retrans (per socket)
      Comments: Change Heartbeat can enable / disable heartbeats in SCTP
      as well as change their frequency.  The parameter
      Association.Max.Retrans defines after how many unsuccessful
      heartbeats the connection will be terminated; thus these two
      primitives / parameters together can yield a similar behavior to
      CHANGE-TIMEOUT.TCP.
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   o  DISABLE-NAGLE.TCP:
      Pass 1 primitive / event: not specified
      Parameters: one boolean value
      Comments: the Nagle algorithm delays data transmission to increase
      the chance to send a full-sized segment.  An application must be
      able to disable this algorithm for a connection.  This is related
      to the no-bundle flag in DATA.SEND.SCTP.

   o  REQUESTHEARTBEAT.SCTP:
      Pass 1 primitive / event: ’Request HeartBeat’
      Parameters: socket
      Returns: success or failure
      Comments: requests an immediate heartbeat on a path, returning
      success or failure.

   o  SETPROTOCOLPARAMETERS.SCTP:
      Pass 1 primitive / event: ’Set Protocol Parameters’
      Parameters: RTO.Initial; RTO.Min; RTO.Max; Max.Burst; RTO.Alpha;
      RTO.Beta; Valid.Cookie.Life; Association.Max.Retrans;
      Path.Max.Retrans; Max.Init.Retransmits; HB.interval; HB.Max.Burst

   o  SETPRIMARY.SCTP:
      Pass 1 primitive / event: ’Set Primary’
      Parameters: socket
      Returns: result of attempting this operation
      Comments: update the current primary address to be used, based on
      the set of available sockets of the association.

   o  ERROR.TCP:
      Pass 1 primitive / event: ’ERROR_REPORT’
      Returns: reason (encoding not specified); subreason (encoding not
      specified)
      Comments: soft errors that can be ignored without harm by many
      applications; an application should be able to disable these
      notifications.  The reported conditions include at least: ICMP
      error message arrived; Excessive Retransmissions.

   o  STATUS.SCTP:
      Pass 1 primitive / event: ’Status’ and ’NETWORK STATUS CHANGE’
      notification
      Returns: data block with information about a specified
      association, containing: association connection state; socket
      list; destination transport address reachability states; current
      receiver window size; current congestion window sizes; number of
      unacknowledged DATA chunks; number of DATA chunks pending receipt;
      primary path; most recent SRTT on primary path; RTO on primary
      path; SRTT and RTO on other destination addresses.  The NETWORK
      STATUS CHANGE notification informs the application about a socket
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      becoming active/inactive.

   o  CHANGE-DSCP.TCP:
      Pass 1 primitive / event: not specified
      Parameters: DSCP value
      Comments: This allows an application to change the DSCP value.
      For TCP this was originally specified for the TOS field [ RFC1122],
      which is here interpreted to refer to the DSField [ RFC3260].

   TERMINATION:
   Gracefully or forcefully closing a connection, or being informed
   about this event happening.

   o  CLOSE.TCP:
      Pass 1 primitive / event: ’close’
      Comments: this terminates the sending side of a connection after
      reliably delivering all remaining data.

   o  CLOSE.SCTP:
      Pass 1 primitive / event: ’Shutdown’
      Comments: this terminates a connection after reliably delivering
      all remaining data.

   o  ABORT.TCP:
      Pass 1 primitive / event: ’abort’
      Comments: this terminates a connection without delivering
      remaining data and sends an error message to the other side.

   o  ABORT.SCTP:
      Pass 1 primitive / event: ’abort’
      Parameters: abort reason to be given to the peer (optional)
      Comments: this terminates a connection without delivering
      remaining data and sends an error message to the other side.

   o  TIMEOUT.TCP:
      Pass 1 primitive / event: ’USER TIMEOUT’ event
      Comments: the application is informed that the connection is
      aborted.  This event is executed on expiration of the timeout set
      in CONNECTION.ESTABLISHMENT.CONNECT.TCP (possibly adjusted in
      CONNECTION.MAINTENANCE.CHANGE-TIMEOUT.TCP).

   o  TIMEOUT.SCTP:
      Pass 1 primitive / event: ’COMMUNICATION LOST’ event
      Comments: the application is informed that the connection is
      aborted. this event is executed on expiration of the timeout that
      should be enabled by default (see beginning of section 8.3 in
      [RFC4960] ) and was possibly adjusted in
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      CONNECTION.MAINTENANCE.CHANGE-TIMEOOUT.SCTP.

   o  ABORT-EVENT.TCP:
      Pass 1 primitive / event: not specified.

   o  ABORT-EVENT.SCTP:
      Pass 1 primitive / event: ’COMMUNICATION LOST’ event
      Returns: abort reason from the peer (if available)
      Comments: the application is informed that the other side has
      aborted the connection using CONNECTION.TERMINATION.ABORT.SCTP.

   o  CLOSE-EVENT.TCP:
      Pass 1 primitive / event: not specified.

   o  CLOSE-EVENT.SCTP:
      Pass 1 primitive / event: ’SHUTDOWN COMPLETE’ event
      Comments: the application is informed that
      CONNECTION.TERMINATION.CLOSE.SCTP was successfully completed.

4.2 .  DATA Transfer Related Primitives

   All primitives in this section refer to an existing connection, i.e.
   a connection that was either established or made available for
   receiving data.  In addition to the listed parameters, all sending
   primitives contain a reference to a data block and all receiving
   primitives contain a reference to available buffer space for the
   data.

   o  SEND.TCP:
      Pass 1 primitive / event: ’send’
      Parameters: timeout (optional)
      Comments: this gives TCP a data block for reliable transmission to
      the TCP on the other side of the connection.  The timeout can be
      configured with this call whenever data are sent (see also
      CONNECTION.MAINTENANCE.CHANGE-TIMEOUT.TCP).

   o  SEND.SCTP:
      Pass 1 primitive / event: ’Send’
      Parameters: stream number; context (optional); life time
      (optional); socket (optional); unordered flag (optional); no-
      bundle flag (optional); payload protocol-id (optional)
      Comments: this gives SCTP a data block for reliable transmission
      to the SCTP on the other side of the connection (SCTP
      association).  The ’stream number’ denotes the stream to be used.
      The ’context’ number can later be used to refer to the correct
      message when an error is reported.  The ’life time’ specifies a
      time after which this data block will not be sent.  The ’socket’
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      can be used to state which path should be preferred, if there are
      multiple paths available (see also
      CONNECTION.MAINTENANCE.SETPRIMARY.SCTP).  The data block can be
      delivered out-of-order if the ’unordered flag’ is set.  The ’no-
      bundle flag’ can be set to indicate a preference to avoid
      bundling.  The ’payload protocol-id’ is a number that will, if
      provided, be handed over to the receiving application.

   o  RECEIVE.TCP:
      Pass 1 primitive / event: ’receive’.

   o  RECEIVE.SCTP:
      Pass 1 primitive / event: ’DATA ARRIVE’ notification, followed by
      ’Receive’
      Parameters: stream number (optional)
      Returns: stream sequence number (optional), partial flag
      (optional)
      Comments: if the ’stream number’ is provided, the call to receive
      only receives data on one particular stream.  If a partial message
      arrives, this is indicated by the ’partial flag’, and then the
      ’stream sequence number’ must be provided such that an application
      can restore the correct order of data blocks that comprise an
      entire message.

   o  SENDFAILURE-EVENT.SCTP:
      Pass 1 primitive / event: ’SEND FAILURE’ notification, optionally
      followed by ’Receive Unsent Message’ or ’Receive Unacknowledged
      Message’
      Returns: cause code; context; unsent or unacknowledged message
      (optional)
      Comments: ’cause code’ indicates the reason of the failure, and
      ’context’ is the context number if such a number has been provided
      in DATA.SEND.SCTP, for later use with ’Receive Unsent Message’ or
      ’Receive Unacknowledged Message’, respectively.  These primitives
      can be used to retrieve the complete unsent or unacknowledged
      message if desired.

5.  Pass 3

   This section presents the superset of all transport service features
   in all protocols that were discussed in the preceding sections, based
   on the list of primitives in pass 2 but also on text in pass 1 to
   include features that can be configured in one protocol and are
   static properties in another.  Again, some minor details are omitted
   for the sake of generalization -- e.g., TCP may provide various
   different IP options, but only source route is mandatory to
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   implement, and this detail is not visible in the Pass 3 feature
   "Specify IP Options".

   [AUTHOR’S NOTE: the list here looks pretty similar to the list in
   pass 2 for now.  This will change as more protocols are added.  For
   example, when we add UDP, we will find that UDP does not do
   congestion control, which is relevant to the application using it.
   This will have to be reflected in pass 1 and pass 2, only for UDP.
   In pass 3, we can then derive "no congestion control" as a transport
   service feature of UDP; however, since it would be strange to call
   the lack of congestion control a feature, the natural outcome is then
   to list "congestion control" as a feature of TCP and SCTP.]

5.1 .  CONNECTION Related Transport Service Features

   ESTABLISHMENT:
   Active creation of a connection from one transport endpoint to one or
   more transport endpoints.

   o  Specify IP Options
      Protocols: TCP

   o  Request multiple streams
      Protocols: SCTP

   o  Obtain multiple sockets
      Protocols: SCTP

   AVAILABILITY:
   Preparing to receive incoming connection requests.

   o  Listen, 1 specified local interface
      Protocols: TCP, SCTP

   o  Listen, N specified local interfaces
      Protocols: SCTP

   o  Listen, all local interfaces (unspecified)
      Protocols: TCP, SCTP

   o  Obtain requested number of streams
      Protocols: SCTP

   MAINTENANCE:
   Adjustments made to an open connection, or notifications about it.
   NOTE: all features except "set primary path" in this category apply
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   to one out of multiple possible paths (identified via sockets) in
   SCTP, whereas TCP uses only one path (one socket).

   o  Change timeout for aborting connection (using retransmit limit or
      time value)
      Protocols: TCP, SCTP

   o  Control advertising timeout for aborting connection to remote
      endpoint
      Protocols: TCP

   o  Disable Nagle algorithm
      Protocols: TCP, SCTP
      Comments: This is not specified in [ RFC4960] but in [ RFC6458].

   o  Request an immediate heartbeat, returning success/failure
      Protocols: SCTP

   o  Set protocol parameters
      Protocols: SCTP
      SCTP parameters: RTO.Initial; RTO.Min; RTO.Max; Max.Burst;
      RTO.Alpha; RTO.Beta; Valid.Cookie.Life; Association.Max.Retrans;
      Path.Max.Retrans; Max.Init.Retransmits; HB.interval; HB.Max.Burst
      Comments: in future versions of this document, it might make sense
      to split out some of these parameters -- e.g., if a different
      protocol provides means to adjust the RTO calculation there could
      be a common feature for them called "adjust RTO calculation".

   o  Notification of Excessive Retransmissions (early warning below
      abortion threshold)
      Protocols: TCP

   o  Notification of ICMP error message arrival
      Protocols: TCP

   o  Status (query or notification)
      Protocols: SCTP
      SCTP parameters: association connection state; socket list; socket
      reachability states; current receiver window size; current
      congestion window sizes; number of unacknowledged DATA chunks;
      number of DATA chunks pending receipt; primary path; most recent
      SRTT on primary path; RTO on primary path; SRTT and RTO on other
      destination addresses; socket becoming active / inactive

   o  Set primary path
      Protocols: SCTP
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   o  Change DSCP
      Protocols: TCP
      Comments: This is described to be changeable for SCTP too in
      [ RFC6458].

   TERMINATION:
   Gracefully or forcefully closing a connection, or being informed
   about this event happening.

   o  Close after reliably delivering all remaining data, causing an
      event informing the application on the other side
      Protocols: TCP, SCTP
      Comments: A TCP endpoint locally only closes the connection for
      sending; it may still receive data afterwards.

   o  Abort without delivering remaining data, causing an event
      informing the application on the other side
      Protocols: TCP, SCTP
      Comments: In SCTP a reason can optionally be given by the
      application on the aborting side, which can then be received by
      the application on the other side.

   o  Timeout event when data could not be delivered for too long
      Protocols: TCP, SCTP
      Comments: the timeout is configured with CONNECTION.MAINTENANCE
      "Change timeout for aborting connection (using retransmit limit or
      time value)".

5.2 .  DATA Transfer Related Transport Service Features

   All features in this section refer to an existing connection, i.e. a
   connection that was either established or made available for
   receiving data.  Reliable data transfer entails delay -- e.g. for the
   sender to wait until it can transmit data, or due to retransmission
   in case of packet loss.

5.2.1 .  Sending Data

   All features in this section are provided by DATA.SEND from pass 2.
   DATA.SEND is given a data block from the application, which we here
   call a "message".

   o  Reliably transfer data
      Protocols: TCP, SCTP
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   o  Notifying the receiver to promptly hand over data to application
      Protocols: TCP
      Comments: This seems unnecessary in SCTP, where data arrival
      causes an event for the application.

   o  Message identification
      Protocols: SCTP

   o  Choice of stream
      Protocols: SCTP

   o  Choice of path (destination address)
      Protocols: SCTP

   o  Message lifetime
      Protocols: SCTP

   o  Choice between unordered (potentially faster) or ordered delivery
      Protocols: SCTP

   o  Request not to bundle messages
      Protocols: SCTP

   o  Specifying a "payload protocol-id" (handed over as such by the
      receiver)
      Protocols: SCTP

5.2.2 .  Receiving Data

   All features in this section are provided by DATA.RECEIVE from pass
   2.  DATA.RECEIVE fills a buffer provided to the application, with
   what we here call a "message".

   o  Receive data
      Protocols: TCP, SCTP

   o  Choice of stream to receive from
      Protocols: SCTP

   o  Message identification
      Protocols: SCTP
      Comments: In SCTP, this is optionally achieved with a "stream
      sequence number".  The stream sequence number is always provided
      in case of partial message arrival.
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   o  Information about partial message arrival
      Protocols: SCTP
      Comments: In SCTP, partial messages are combined with a stream
      sequence number so that the application can restore the correct
      order of data blocks an entire message consists of.

5.2.3 .  Errors

   This section describes sending failures that are associated with a
   specific call to DATA.SEND from pass 2.

   o  Notification of unsent messages
      Protocols: SCTP

   o  Notification of unacknowledged messages
      Protocols: SCTP
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Appendix A .  Overview of RFCs used as input for pass 1

   TCP:  [ RFC0793], [ RFC1122], [ RFC5482]
   SCTP:  [ RFC4960], planned: [ RFC6458]

Appendix B .  How to contribute

   This document is only concerned with transport service features that
   are explicitly exposed to applications via primitives.  It also
   strictly follows RFC text: if a feature is truly relevant for an
   application, the RFCs better say so and in some way describe how to
   use and configure it.  Thus, the approach to follow for contributing
   to this document is to identify the right RFCs, then analyze and
   process their text.

   Experimental RFCs are excluded, and so are primitives that MAY be
   implemented (by the transport protocol).  To be included, the minimum
   requirement level for a primitive to be implemented by a protocol is
   SHOULD.  If [ RFC2119]-style requirements levels are not used,
   primitives should be excluded when they are described in conjunction
   with statements like, e.g.: "some implementations also provide" or
   "an implementation may also".  Briefly describe excluded primitives
   in a subsection called "excluded primitives".

   Pass 1: Identify text that talks about primitives.  An API
   specification, abstract or not, obviously describes primitives -- but
   note that we are not *only* interested in API specifications.  The
   text describing the ’send’ primitive in the API specified in
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   [ RFC0793], for instance, does not say that data transfer is reliable.
   TCP’s reliability is clear, however, from this text in Section 1 of
   [RFC0793] : "The Transmission Control Protocol (TCP) is intended for
   use as a highly reliable host-to-host protocol between hosts in
   packet-switched computer communication networks, and in
   interconnected systems of such networks."

   For the new pass 1 subsection about the protocol you’re describing,
   it is recommendable to begin by copy+pasting all the relevant text
   parts from the relevant RFCs, then adjust terminology to match the
   terminology in Section 1  and adjust (shorten!) phrasing to match the
   general style of the document.  Try to formulate everything as a
   primitive description to make the primitive description as complete
   as possible (e.g., the "SEND.TCP" primitive in pass 2 is explicitly
   described as reliably transferring data); if there is text that is
   relevant for the primitives presented in this pass but still does not
   fit directly under any primitive, use it as an introduction for your
   subsection.  However, do note that document length is a concern and
   all the protocols and their services / features are already described
   in [ FA15].

   Pass 2: The main goal of this pass is unification of primitives.  As
   input, use your own text from Pass 1, no exterior sources.  If you
   find that something is missing there, fix the text in Pass 1.  The
   list in pass 2 is not done by protocol ("first protocol X, here are
   all the primitives; then protocol Y, here are all the primitives,
   ..") but by primitive ("primitive A, implemented this way in protocol
   X, this way in protocol Y, ...").  We want as many similar pass 2
   primitives as possible.  This can be achieved, for instance, by not
   always maintaining a 1:1 mapping between pass 1 and pass 2
   primitives, renaming primitives etc.  Please consider the primitives
   that are already there and try to make the ones of the protocol you
   are describing as much in line with the already existing ones as
   possible.  In other words, we would rather have a primitive with new
   parameters than a new primitive that allows to send in a particular
   way.

   Please make primitives fit within the already existing categories and
   subcategories.  For each primitive, please follow the style:

   o  PRIMITIVENAME.PROTOCOL:
      Pass 1 primitive / event:
      Parameters:
      Returns:
      Comments:

   The entries "Parameters", "Returns" and "Comments" may be skipped if
   a primitive has no parameters, no described return value or no
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   comments seem necessary, respectively.  Optional parameters must be
   followed by "(optional)".  If a default value is known, provide it
   too.

   Pass 3: the main point of this pass is to identify features that are
   the result of static properties of protocols, for which all protocols
   have to be listed together; this is then the final list of all
   available features.  For this, we need a list of features per
   category (similar categories as in pass 2) along with the protocol
   supporting it.  This should be primarily based on text from pass 2 as
   input, but text from pass 1 can also be used.  Do not use external
   sources.

Appendix C .  Revision information

   XXX RFC-Ed please remove this section prior to publication.

   -00 (from draft-welzl-taps-transports ): this now covers TCP based on
   all TCP RFCs (this means: if you know of something in any TCP RFC
   that you think should be addressed, please speak up!) as well as
   SCTP, exclusively based on [ RFC4960].  We decided to also incorporate
   [ RFC6458] for SCTP, but this hasn’t happened yet.  Terminology made
   in line with [ FA15].  Addressed comments by Karen Nielsen and Gorry
   Fairhurst; various other fixes.  Appendices (TCP overview and how-to-
   contribute) added.
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Disclaimer

The views expressed in this document are solely those of the author(s). The European Com-

mission is not responsible for any use that may be made of the information it contains.

All information in this document is provided “as is”, and no guarantee or warranty is given

that the information is fit for any particular purpose. The user thereof uses the information

at its sole risk and liability.
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