Preprint (accepted version)

Presented at IEEE LANMAN 2016
http://www.ieee-lanman.org

Please cite as:

Karl-Johan Grinnemo, Tom Jones, Gorry Fairhurst, David Ros, Anna Brunstrom and Per
Hurtig. “Towards a Flexible Internet Transport Layer Architecture”. 2016 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN), Rome, June 2016, pp. 1-7.

Digital Object Identifier: http://dx.doi.org/10.1109/LANMAN.2016.7548846

(© 2016 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Towards a Flexible Internet Transport Layer
Architecture

Karl-Johan Grinnemo®, Tom Jones*, Gorry Fairhurst*, David Rost, Anna Brunstrom’ and Per Hur‘[igT
TKarlstad University, Karlstad, Sweden
{karl-johan.grinnemo, anna.brunstrom, per.hurtig} @kau.se
*University of Aberdeen, Aberdeen, U.K.
{tom, gorry}@erg.abdn.ac.uk
fSimula Research Laboratory, Oslo, Norway
dros@simula.no

Abstract—There is a growing concern that the Internet trans-
port layer has become less adaptive to the requirements of new
applications, and that further evolution has become very difficult.
This is because a fundamental assumption no longer holds: it can
no longer be assumed that the transport layer is only in the scope
of end-hosts. The success of TCP and UDP and the ubiquity
of middleboxes have led to ossification of both the network
infrastructure and the API presented to applications. This has led
to the development of workarounds and point solutions that fail
to cover many facets of the problem. To address this issue, this
paper identifies requirements for a new transport layer and then
proposes a conceptual architecture that we argue is both flexible
and evolvable. This new architecture requires that applications
interface to the transport at a higher abstraction level, where
an application can express communication preferences via a new
richer API. Protocol machinery can use this information to decide
which of the available transport protocols is used. By placing the
protocol machinery in the transport layer, the new architecture
can allow for new protocols to be deployed and enable evolution
of the transport layer.

Index Terms—Transport layer, ossification, application-aware
networking, transport API, Internet architecture.

I. INTRODUCTION

By all measures, the current Internet is a huge success.
One of the major reasons for its success is its evolvable
architecture, and thus its ability to adapt to the requirements
of new applications. During more than 40 years of existence,
the Internet has undergone several fundamental changes. In
the early 1980s the Network Control Protocol (NCP) was
replaced with the Transmission Control Protocol (TCP [1]),
the Domain Name System (DNS) was deployed, and link-
state routing protocols came into existence. In the early 1990s,
classful addressing was replaced by Classless Inter-Domain
Routing (CIDR). However, in later years, very few changes to
the Internet architecture have garnered global acceptance, and
there is a growing concern that the transport layer has become
ossified, where further developments are hard or impossible to
deploy globally.

The opportunity to introduce new transports has disap-
peared. This seems to be the experience for all new transport
protocols that have been designed. Even protocols imple-
mented in networking stacks, such as UDP-Lite [2], SCTP [3],

and DCCP [4], have still failed to be widely used across the
Internet. This is largely due to NATs, firewalls, and various
other middleboxes. The design of middleboxes has focused on
widely deployed transport protocols and applications and as a
result middleboxes tend to filter out all traffic that is not TCP
or UDP. Some only pass port 80 (HTTP) or port 443 (HTTPS),
or protocols that they have been directly configured to support.

The transport API offered by operating systems has also
become ossified and unable to adapt to the needs of novel
applications. The ubiquity of TCP and UDP has meant that
APIs typically tie applications to a priori choices of protocol
(either TCP or UDP), and so applications have become hard-
coded to use a specific transport—decided at design time.

Even simple connectivity is sometimes hard, when it differs
from what is considered the norm by network equipment
designers and those who configure the equipment. Peer-to-
peer connectivity (e.g., for voice or multi-party interaction)
requires applications to introduce complicated workarounds,
such as ICE [5], to determine what protocols actually work
across a path. Although there may be common methods, the
solutions are built into individual applications.

Facing this daunting world, transport protocol designers
have more recently proposed development of application-layer
transport protocols that use the current underlying transport
layer as a communication substrate, e.g., QUIC [6] that
uses UDP as a substrate, and the Minion suite of transport
protocols [7] that use TCP or UDP as substrates. Still, these
protocols are in many ways only point solutions: QUIC
primarily targets web traffic and Minion datagram services.
SPUD [8] is a new initiative that also tries to use a UDP
substrate to enable faster transport evolution.

This paper argues that there needs to be a more complete
solution to the ossification problem. It proposes a design that
can decouple applications from the choice of actual transport
protocol being used, and enable applications to explicitly
communicate their service requirements via a new transport
API, with the transport protocol and options being selected at
run-time. This change opens up for a more adaptive transport
solution that enables new network and transport functions

© 2016 IEEE

and services to be added incrementally and transparently. Our
proposal builds on previous work that has recognized the value
of a higher layer transport interface (e.g., [9], [10]) where it
can improve use of the network layer and take advantage of
capabilities offered by different network paths. We extend this
approach to a more complete solution that can enable transport
protocol evolution across the Internet.

The remainder of the paper is organized as follows. Sec-
tion II reviews previous and ongoing efforts to revitalize
the Internet transport architecture. Section III presents an
example of a point solution as a way of highlighting possible
improvements, but also deficiencies of a piecemeal approach
to ossification. Next, in Section IV, we discuss the require-
ments that need to be fulfilled by a new transport system.
A conceptual architecture addressing these issues is detailed
in Section V. The paper concludes in Section VI with a
brief discussion of how we intend to continue our efforts in
designing and developing this system.

II. POINT SOLUTIONS TO TRANSPORT OSSIFICATION

The slow pace at which new transport services can be
introduced in the Internet has become a major concern in
the research community for at least the past decade [11]-
[15]. Early on, virtual network overlays were seen as a
promising solution to the ossification of the Internet transport
architecture. For example, Peterson et al. [16] suggested using
an overlay-based testbed in which legacy and novel services
run concurrently in separate so-called slices. An even bolder
proposal was put forward by Turner and Taylor [13], who
proposed using virtual overlay techniques to transform the
Internet into a network of meta-networks, with each meta-
network using the existing Internet architecture as a substrate
on top of which meta-links and routers could be created.

Although virtual network overlays are not without virtues,
they hide the underlying network from the transport. They
also deny the opportunity to interact with the network (e.g., to
take advantage of differences in the offered network services,
or infer up-to-date overlay link information), which adds to
ossification. These methods typically also need to send prob-
ing messages to neighboring nodes. The overhead incurred
depends on both the topology and the employed routing
protocol, but can be substantial [17]. The processing overhead
for packet encapsulation, decapsulation, and demultiplexing
adds to total overhead. Virtual overlays basically relegate the
current Internet to become a communication substrate, impos-
ing homogeneity on a diverse network service—providing an
obstacle to evolution of different network-transport interac-
tions.

A less drastic solution to the problem of ossification is to use
application-layer transport enhancements, such as middleware.
This can enable distributed applications to communicate with
little or no knowledge of the underlying network infrastruc-
ture and protocols. A large and varied selection of com-
munication middleware has been proposed. Early examples
include CORBA [18] and traditional RPC toolkits. These

can be fairly complex to use and incur a considerable over-
head, especially when used for performance-sensitive traffic.
Two more recent examples are the Windows Communication
Foundation (WCF) [19] of the .NET Framework [20], and
the communication components of the Java Enterprise Edi-
tion (J2EE) [21]. Both WCF and the J2EE communication
parts have limited scope, and primarily target web and trans-
actional services.

ZeroMQ [22] is an example of a more general middleware.
This appears to an application as an extension of the traditional
socket API adding support for several communication patterns
such as publish-subscribe and pipeline. ZeroMQ has support
for message framing and queueing, automatic error recov-
ery, and other common middleware features. Still, although
ZeroMQ has broad support for transport protocols its focus is
largely on TCP.

The last decade has seen a renewed interest in application-
level transport protocols, another category of application-level
transport enhancements. One early example is the uTorrent
transport protocol (uTP) [23], motivated by allowing Bit-
Torrent clients to better share capacity with standard TCP
applications, while at the same time enabling utilization of
unused capacity. More recent examples include SPDY [24]
and QUIC (Quick UDP Internet Connections) [6], both ema-
nating from Google’s research to make the Web faster. SPDY
was designed to be a low-latency replacement for HTTP. It
addressed the poor support for pipelining and prioritization
in HTTP, its inability to send compressed headers, and its
lack of resource push capabilities, becoming the foundation
for HTTP/2 [25]. SPDY runs over TCP, and thus has to live
with TCP’s relatively long connection-establishment times,
vulnerabilities to head-of-line blocking, and less than ideal
congestion control, with mixed performance — sometimes it
is able to reduce page load times, however, sometimes it has
the opposite effect [26]. QUIC was designed in response to
the deficiencies of SPDY, and is essentially a UDP-based
transport protocol that incorporates the functionality of both
SPDY and TCP, as well as support for Transport Layer
Security (TLS) [27]. The main argument against uTP, SPDY,
QUIC, and other application-level transport protocols is that
they primarily target one particular application or category of
applications, and that they are less useful, or even impossible
to use, by other applications: uTP works well for delay-
insensitive but not for -sensitive traffic, and SPDY and QUIC
are not intended for use by streaming-media applications.

The Minion suite of transport protocols [7] was designed
as a framework for the development of TCP wire-compatible
transport services that offer unordered message delivery. The
uTCP extension adds unordered delivery primitives to standard
TCP. At present, two application-level transport protocols
have been designed on top of uTCP: uCOBS, a lightweight
datagram delivery service, and uTLS, an encrypted version.
These protocols still function properly over standard TCP, and
thus support incremental deployment. Despite its attractive
features, three years after conception, the Minion suite has
yet to see any wide-scale use. One reason could be that uTCP,

arguably crucial to the success of Minion, is OS dependent.

Multipath TCP (MPTCP [28]) is an extension to standard
TCP that enables multiple network paths to be simultaneously
used by a single transport connection. Applications can employ
MPTCP without modifications to the socket API calls. The
design of MPTCP had to work around the ossification of the
Internet transport architecture [12], and MPTCP is therefore
designed to look like standard TCP on the wire. In recent
years, MPTCP has earned quite a bit of interest, not least due
to Apple’s use of MPTCP for its Siri personal assistant service.
Still, it is rather obvious from the huge effort necessary to
design and implement MPTCP as part of standard TCP that
MPTCP is not demonstrating a way forward to a more flexible
and adaptive transport layer.

SCTP, UDP-Lite and DCCP are three protocols that struggle
with deployment, since to achieve broad adoption they would
require support within middleboxes in the network, and such
support is unlikely to emerge in general equipment unless there
is wide-scale use. This vicious circle of dependency prevents
any evolution path. One approach could be to encapsulate the
protocols over UDP, and such methods have been standardized
for SCTP and DCCP [29], [30].

A different approach to ossification is to extend the socket
API. Over the years, several socket API extensions have been
proposed. For example, msocket [31] enables an application to
access multiple distinct protocol stacks, something not possible
via the socket API. Another, more comprehensive, extension is
Sockets++ [32], which addresses a range of limitations, includ-
ing support for multipoint connections and multi-streaming,
i.e., connections that comprise several concurrent streams.

Some proposed extensions to the socket API seek to en-
able applications to express their service requirements to
the network stack. One example is multi-sockets [9], which
introduces the idea of intentional networking. Applications
use labels to communicate their intent to the multi-sockets
library, which maps these intents to networks with particular
characteristics. The application intents are qualitative rather
than quantitative, e.g., they could inform the multi-sockets
library whether a transmission is to be considered background
or foreground traffic. Another example of a more expressive
socket API is Socket Intents [10]. In the same way as multi-
sockets, Socket Intents makes it possible for applications to
supply information about their traffic that can enable better
selection of the network service. However, in contrast to multi-
sockets, Socket Intents uses socket options instead of labels.
It also takes a broader scope on intentional networking, and
lets socket options not only determine the choice of network
interface, but also how socket parameters should be tuned.
When a host is multihomed, Socket Intents relies upon the
DNS being consistent between network interfaces.

Our proposed transport system builds to a large extent on
the idea of intentional networking and Socket Intents, however,
takes a much broader scope. In the same way as Socket Intents,
our transport system offers a user API that enables applica-
tions to express their communication preferences, however,
unlike Socket Intents, our transport system explicitly consid-

Server App Client App
Transport Transport
i i I i2
Middlebox
Path 1

Mobile ISP

Fig. 1. Emulated network for web browsing over multiple interfaces.

ers additional requirements deemed necessary for a future-
proof transport system, including: deployability, flexibility,
evolvability, and portability. Notably, our transport system
provides mechanisms that handle middlebox traversal, and
allow the incremental introduction of new transport protocols
and services. Also, our transport system is designed in such a
way that it is portable across different platforms and operating
systems.

III. POINT SOLUTION: AN EXAMPLE OF ISSUES

This section provides an example of how a more expressive
API can be used to enable better network decisions, and why
it is an important prerequisite to releasing the protocol stack
from the limitations presented by ossification. However, a
more expressive API is a necessary but not a sufficient solution
to the ossification problem.

We consider two simple experiments using a framework
based on Socket Intents. These experiments show the advan-
tage of such a system when using a device with multiple
network interfaces.

Our experiments used settings similar to those in [10].
Two gigabit Ethernet interfaces (il, i2) are used to make
requests to a common web server (i0), each connected via
a traffic shaper running dummynet (represented by network
clouds in Fig. 1). The client, web server and traffic shaper
ran FreeBSD. Interface il had a low latency and low capacity
(representative of a typical DSL line with 10ms RTT, 6 Mbit/s
downlink, 768 Kbit/s uplink) and i2 had high latency, but high
capacity (representing a lightly loaded LTE link with 70ms
RTT, 12 Mbit/s downlink, 6 Mbit/s uplink). Competing traffic
was created using a Python program to download a large file
on the same interface for the il and i2 single interface tests
and on the bulk interface (i2) in the multi-interface test.

Content was replicated on the server from the front page
of the New York Times (NYT, nytimes.com) and an internal
discovery page on Flickr (flickr.com/explore). The Flickr page
contained 31 objects, with sizes in the range from 13 Kbytes
to 589 Kbytes and a mean of 134 Kbytes. The NYT Page
contained 135 objects with sizes in the range from 1 Kbyte to
211 Kbytes and a mean of 30 Kbytes.

15

5 o
2 J—
Eo =
P —
8
< [=====]
3
O
o
g =
5
[=}
1723
3}
o)
8o]
o
2 __
< ==]
o
[S] T —
i1 i2 itandi2 il i2 itandi2
Flickr New York Times

(avg of 31 resources) (avg of 135 resources)

Fig. 2. Box plot showing average resource download times for different
strategies.

Ideally, time-dependent web requests would be sent using
the lowest latency interface (providing a smooth browsing
experience), but any media files would be requested over the
higher bandwidth bulk interface (reducing download time).

We tried to verify the results in [10] by independently
implementing the Socket Intents interface selection mechanism
which allows traffic to be identified as time-dependent or
bulk. A Python program was used to evaluate each URL
retrieved by the client: if the resource was of type png or
jpeg, it was considered a media file and directed over the high
capacity interface i2. If not, it was sent over interface il. This
directed traffic to be sent using the most appropriate interface.
Socket Intents and our Python program are configured with
the interface properties to aide with selecting the interface to
use for each request.

We measured the total time consumed to download all the
resources on the page using a single http connection. For
simplicity we present the time per object. Browsers using
HTTP/1.1 typically use parallel multiple connections to a
server, and content providers often use methods such as
sharding to distribute content across multiple servers. This
makes the ideal minimum page download time a function of
the number of parallel connections, but the actual download
time will be impacted by the design of the browser, the
distribution of object sizes and server layout.

Fig. 2 is a box plot of the average download times for
each of the resources on each site over each of the interfaces,
also considering taking advantage of both interfaces. The
experiments show that even small changes in the transport
system can significantly improve download time, compared to
a design that could only take advantage of one interface at a
time. We can see that the simple multiple interface binding

shows an average improvement of 20% over the i2 only case
for the Flickr page and similar performance against just with
i2 for the NYT page. This difference can be explained by
the larger variation in range between the web requests on the
Flickr page than on the NYT page.

While we do expect to see a growing number of devices
with multiple interfaces (each with local link characteristics,
like i1 and i2 in Fig. 1), we also expect to see the emer-
gence of multiple services across an interface—such as QoS
differentiation, and the use of multiple IPv6 prefixes linked to
different operator SLAs, e.g., allowing traffic from i2 to be
routed on different network paths (paths 2 and 3 in Fig. 1).
However, this is only a part of the problem that needs to be
addressed in a real-world setting. The practice of using DNS
redirection to route to local content means that resources that
have been looked up on one interface may not be local to
the network offered by another interface. Unless the system
is able to understand the actual context of each interface, this
can lead to suboptimal routing, adding to latency and network
load. The actual problem is more than simply making the best
choice based on the interface properties.

Furthermore, there are opportunities to significantly improve
performance by using a transport protocol that is more ap-
propriate for web page downloads than the default UDP or
TCP transports, e.g., QUIC, SCTP, or TCP Minion. However,
this would require a method to determine the set of transports
supported at both the local and the destination endpoints. This
could be found by probing the remote endpoint and seeing if
it supports the alternate transport, but what actually matters is
that the path over which the packets are sent can support the
new transport. A middlebox on the path (e.g., path 1 in Fig. 1)
could pass all these protocols, or may block any of them. If
applications had to change to use these protocols, they would
need to implement probing and discovery mechanisms—but
we argue that such methods are better placed below the
transport interface, where they can also take advantage of the
evolution of the transport stack, and of shared information
about the success/failure of previous attempts by this and
other applications to use each known path. Choosing the best
network path and the most appropriate transport therefore
becomes a multi-dimensional selection problem.

IV. TRANSPORT REQUIREMENTS

This section presents the requirements for a new approach
to the design of an Internet transport system that is flexible and
evolvable. From the example in the previous section it is clear
that a seemingly easy task such as choosing the best network
path, in reality is a very hard problem. The requirements for a
new transport system must therefore be well designed to offer
a remedy to the present ossification problem.

a) Deployable: A key requirement is that any new trans-
port system is itself deployable. Its design must be independent
of the operating system and particular network technologies.
As an implication of this, it should not rely on protocols
or features that are only available on certain host operating
systems, or expect applications to include special mechanisms.

Application

NEAT User API

User Space Transport NEAT
NEAT User Module Policy
Manager
New
[V][e3 SCTP |......
Q Transport

KERNEL

ubP ‘ TcP SCTP H Minion New
Transport
IPV4/IPV6

Fig. 3. The NEAT Architecture.

Instead, these should be an integral part of the transport system
itself.

b) Evolvable: A transport system must be evolvable and
permit independent evolution of its components, allowing new
mechanisms and protocols to be added as required, and for
applications to benefit from new features as infrastructure
evolves. We recognize that middleboxes have become an
integral part of the Internet [33], [34], and a transport system
has to be able to discover whether any new solution works
across a middlebox-encumbered path, and if necessary fall
back to a protocol that can work across this path, allowing
incremental deployment.

c) Present a new API: In analyzing the protocol archi-
tecture, it has become clear that the goals can not be met
unless the API to the transport layer evolves. A new API
must to offer a higher abstraction than the present sockets
API, ideally allowing applications to specify their transport
service needs, rather than configuring a specific transport
protocol instance, e.g., if the instance is stream-oriented or
transactional, if it is bursty or generates data at a fairly constant
rate, etc. This allows the transport system to have the option
of deciding which transport protocol to use and how it should
be configured.

V. THE NEAT SYSTEM

Currently available solutions are essentially point or partway
solutions aimed at fixing specific issues (addressing one or
several of the requirements). We do not know of any existing
single architecture that encompasses all the requirements to fix
the current “transport logjam” [7]. In isolation, these solutions
do not provide a way to revitalize the Internet architecture so
that it again can become flexible and evolvable.

We believe that the correct approach is to provide a com-
prehensive transport architecture, which we have called a
New, Evolutive API and Transport-layer architecture for the

User API

GrameworlD <Selection> < Policy) <Transport> <Signa|ing>

Fig. 4. The NEAT User Module.

Internet (NEAT). An overview of the NEAT architecture is
given in Fig. 3. NEAT offers an enhanced API for applica-
tions to access transport services. NEAT includes a set of
protocol mechanisms that takes care of middlebox traversal
and protocol selection, accompanied with a fallback service
when paths are incapable of supporting the chosen protocol.
NEAT has an evolvable architecture that opens up for new
transport services and can enable interaction with network
devices to improve the transport service. NEAT also enables
the incremental introduction of new transport protocols: both
in the kernel and in user space.

The User Module is designed to be portable across different
operating systems and network stacks. It comprises five groups
of components (see Fig. 4): Framework, Selection, Policy,
Transport, and Signaling.

The Framework components provide the functionality re-
quired to use the NEAT System. They define the structure of
the User API and interfaces to the logic that implements the
core mechanisms. Applications provide information about the
requirements for a desired transport service via the API. The
framework also includes components for diagnostic, debug-
ging and measurement. The additional information reported
by NEAT can be used to identify which components in NEAT
are in use, and how components have been configured.

The Selection components choose an appropriate transport
endpoint and a set of candidate transport components. The

additional API information enables the NEAT System to
move beyond the constraints of the traditional socket API,
making the stack aware of what is actually desired or required
for each traffic flow. This is combined with inputs from a
Policy Manager (see below). After identification of candidate
services, it will test the suitability of the candidates, utilizing
information known about the path, and by attempting to make
endpoint connections. Parts of this algorithm will be performed
in parallel to avoid unnecessary delay.

The Policy components comprise the Policy Information
Base (PIB), the Characteristics Information Base (CIB), and
the Policy Manager. The PIB is a repository that contains a col-
lection of policies, where each policy consists of a set of rules
linking a set of matching requirements to a set of preferred
or mandatory transport characteristics. Policies can be added
by the system administrator, external entities or applications,
and have different priorities. The CIB is a repository storing
information about available interfaces, supported protocols,
network properties and current/previous connections between
endpoints. Some mechanisms to populate the CIB are already
implemented in operating systems as statistics/measurement
tools and will be made available as default CIB sources.
Another class of CIB sources will be provided by the NEAT
Selection components which will store discovered transport
protocols and parameters supported along paths in the CIB for
future reuse. External CIB sources may be provided by device
and operating system vendors or third parties developing
modules for active or passive measurements, statistics and
metadata collection.

The Policy Manager enables a set of rules to specify the
transport protocol to use for a particular transport service, the
configuration of the selected transport protocol, etc., imple-
mented in the PIB. In contrast, acquired knowledge about end-
points and the network, evolves over time, and is stored in the
CIB. This enables the Policy Manager to cache characteristics
allowing future flows to benefit from previous flow experience.
Tests have already been made with the Mozilla Firefox web
browser that clearly suggest that caching flow characteristics
would be useful. Particularly, in a field trial by Mozilla, they
observed a hit rate in their internal ‘route’ cache of more than
80%, suggesting frequent requests for the same web objects.

Together, Selection and Policy enable applications to be
designed and implemented to be oblivious to the transport pro-
tocols of a particular platform. They facilitate NEAT to make
an appropriate decision based on application requirements and
what is made available for a network endpoint. Making these
decisions at run time rather than at application-design time,
ensures that an appropriate choice is made, provides opportuni-
ties to consider multiple, possibly conflicting, constraints, and
avoids each application having to code for the possibility that
a path does not support a particular mechanism or combination
of mechanisms.

The Transport components are responsible for providing
functions to instantiate the transport service for a particular
flow in NEAT. Transport provides a set of transport protocols,
e.g., TCP, UDP, SCTP, TLS, DTLS, etc., and other components

to realize a transport service (such as priority handling). While
the selection of transport protocols are handled by the Selec-
tion components, the Transport components are responsible
for configuring and managing the transport protocols.

The Signaling components can provide advisory signaling
to complement the functions of Transport. This could include
communication with middleboxes, support for failover and
handover and other mechanisms. There are two types of
signaling: transport and network. Transport signaling enables
the exchange of capability information between NEAT end-
points, and provides input to the Policy Manager concerning
what capabilities a peer endpoint supports. Network signaling
communicates with devices along the network path. This could
be as simple as the distribution of Differentiated Services Code
Points, signals that help up-speed or down-speed for trans-
ports, through to something as complex as QoS negotiation.

Placing optional network signaling below the transport API
can allow applications to indicate how/whether they would
like to use network signaling, without requiring each appli-
cation to be updated each time a new signaling protocol is
introduced. The NEAT system can determine the appropriate
signaling mechanisms to use on a path to a particular endpoint.
Freeing applications from choosing and supporting signaling
protocols is expected to reduce the barriers to introducing new
mechanisms in the network, allowing signaling messages to
be exchanged with network devices as such new signaling
protocols emerge and become supported across the network.

Just as a higher-level transport API decouples transport and
interface selection (e.g., to offer potential for services to evolve
independently of applications), so also there can be benefits in
the way that transports interact with the network. For example,
when UDP is used to encapsulate a transport that does not
have widespread network support (e.g., SCTP, or any new
transport), the NEAT system can select one of a number of
signaling protocols (e.g., PCP [35]) to coordinate with local
mappings in a firewall/NAT ensuring that the local network de-
vice keeps state while a transport protocol connection remains
active. Similarly, a future transport protocol could benefit from
signaling received about a path’s congestion, disruption, or
some other characteristic—all of which can be interpreted
within the context of the transport connection. The higher
abstraction of the transport API therefore not only enables
flexibility, it can provide a path to future evolution of the
transport layer.

VI. CONCLUSION

This paper has examined the requirements for a new trans-
port system and proposed a conceptual architecture, NEAT,
which we suggest can break the current ossification of the
Internet transport architecture, enabling incremental flexible
deployment and use of new transport services and features.
In this architecture, applications will interface through an
enhanced API that decouples them from the choice of transport
protocol and network features to be used. The enhanced API
provides information about traffic requirements, and NEAT

combines this with pre-specified policies, and measured net-
work conditions; the transport system then chooses appropriate
transport protocols and features. Protocol machinery within the
transport stack manages functions such as middlebox traversal,
and can be extended to interact with network devices to
enable specific transport services, and provide a pathway to
creation of new services. Still, NEAT is not without challenges.
A key challenge for any new service-oriented interface to
reach significant impact is the need for industry uptake and
standardization of the interface. The ongoing IETF work
within the Transport Services working group (TAPS) shows
the current interest in this regard [36]-[38].

We are currently implementing the main parts of the NEAT
system, and use this to explore performance in actual net-
works. For example, feature prototypes for the discovery of
available transport services have been developed, and work is
ongoing to design a NEAT policy management component.
The source code to our NEAT system implementation is
available on GitHub [39].

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 644334 (NEAT). The views expressed are
solely those of the authors.

REFERENCES

[1] J. Postel, “Transmission Control Protocol,” RFC 793 (Internet Standard),
Internet Engineering Task Force, Sep. 1981, Updated by RFCs 1122,
3168, 6093, 6528. [Online]. Available: http://www.ietf.org/rfc/rfc793.txt

[2] L.-A. Larzon, M. Degermark, S. Pink, L.-E. Jonsson, and G. Fairhurst,
“The Lightweight User Datagram Protocol (UDP-Lite),” RFC 3828
(Proposed Standard), Internet Engineering Task Force, Jul. 2004,
Updated by RFC 6335. [Online]. Available: http://www.ietf.org/rfc/
rfc3828.txt

[3] R. Stewart, “Stream Control Transmission Protocol,” RFC 4960
(Proposed Standard), Internet Engineering Task Force, Sep. 2007,
Updated by RFCs 6096, 6335, 7053. [Online]. Available: http:
/Iwww.ietf.org/rfc/rfc4960.txt

[4] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” RFC 4340 (Proposed Standard), Internet Engineering
Task Force, Mar. 2006, Updated by RFCs 5595, 5596, 6335, 6773.
[Online]. Available: http://www.ietf.org/rfc/rfc4340.txt

[5] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol
for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols,” RFC 5245 (Proposed Standard), Internet Engineering
Task Force, Apr. 2010, Updated by RFC 6336. [Online]. Available:
http://www.ietf.org/rfc/rfc5245. txt

[6] J. Roskind, “Quick UDP Internet Connections,” Google, Tech. Rep.,
Apr. 2012.

[71 M. F. Nolan, N. Tiwari, J. Iyengar, S. O. Amin, and B. Ford, “Fit-
ting Square Pegs Through Round Pipes: Unordered Delivery Wire-
Compatible with TCP and TLS,” in USENIX NSDI, San Jose, CA, U.S.,
Apr. 2012.

[8] M. Kuehlewind and B. Trammell, “SPUD Use Cases,” Jul. 2015.

[91 B. D. Higgins, A. Reda, T. Alperovich, and J. Flinn, “Intentional
Networking: Opportunistic Exploitation of Mobile Network Diversity,”
in The 16** Annual International Conference on Mobile Computing and
Networking, Chicago, IL, U.S., Sep. 2010.

[10] P.S. Schmidt, T. Enghardt, R. Khalili, and A. Feldmann, “Socket Intents:
Leveraging Application Awareness for Multi-Access Connectivity,” in
ACM CoNEXT, Santa Barbara, CA, U.S., Dec. 2013.

[11] M. Handley, “Why the Internet only just works,” BT Technology Journal,
vol. 24, pp. 119-129, Jul. 2006.

[12] M. Honda, Y. Nishida, C. Raiciu, M. Greenhalgh, M. Handley, and
H. Tokuda, “Is it still possible to extend TCP?” in ACM IMC, Berlin,
Germany, Nov. 2011.

[13] J.S. Turner and D. E. Taylor, “Diversifying the Internet,” in IEEE Global
Telecommunications Conference, St. Louis, MO, U.S., Nov. 2005.

[14] L. M. Correia, H. Abramowicz, and K. Wiinstel, Eds., Architecture and
Design for the Future Internet. Dordrecht, Heidelberg, London, New
York: Springer, 2011.

[15] M. Welzl, S. Jorer, and S. Gjessing, “Towards a Protocol-Independent
Transport APL” in IEEE ICC, Kyoto, Japan, Jun. 2011.

[16] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A Blueprint for
Introducing Disruptive Technology in the Internet,” ACM SIGCOMM
Comp. Comm. Review, vol. 33, pp. 59-64, Jan. 2003.

[17] Z. Li and P. Mohapatra, “The Impact of Topology on Overlay Routing
Service,” in IEEE INFOCOM, Hong Kong, Mar. 2004.

[18] Object Management Group (OMG), “Common Object Request Broker
Architecture (CORBA) Specification, Version 3.3,” Nov. 2012.

[19] Microsoft Inc. Windows Communication Foundation (WCF). https:
//msdn.microsoft.com/en-us/library/hh128109.aspx.

[20] ——. Overview of the .NET Framework. https://msdn.microsoft.com/
en-us/library/zw4w595w.aspx.

[21] Oracle Inc. Java EE at a Glance. http://www.oracle.com/technetwork/
java/javaee/overview/index.html.

[22] iMatix. ZeroMQ — Distributed Messaging. http://zeromq.org.

[23] A. Norberg. uTorrent Transport Protocol. http://www.bittorrent.org/beps/
bep_0029.html.

[24] M. Belshe and R. Peon, “SPDY Protocol,” Feb. 2012.

[25] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer
Protocol Version 2 (HTTP/2),” RFC 7540 (Proposed Standard),
Internet Engineering Task Force, May 2015. [Online]. Available:
http://www.ietf.org/rfc/rfc7540.txt

[26] Y. Elkhatib, G. Tyson, and M. Welzl, “Can SPDY really make the web
faster?” in IFIP Networking, vol. 41, no. 4, 2014, pp. 1-9.

[27] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2, RFC 5246 (Proposed Standard), Internet
Engineering Task Force, Aug. 2008, Updated by RFCs 5746,
5878, 6176, 7465, 7507, 7568, 7627, 7685. [Online]. Available:
http://www.ietf.org/rfc/rfc5246.txt

[28] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP
Extensions for Multipath Operation with Multiple Addresses,” RFC
6824 (Experimental), Internet Engineering Task Force, Jan. 2013.
[Online]. Available: http://www.ietf.org/rfc/rfc6824.txt

[29] M. Tuexen and R. Stewart, “UDP Encapsulation of Stream Control
Transmission Protocol (SCTP) Packets for End-Host to End-
Host Communication,” RFC 6951 (Proposed Standard), Internet
Engineering Task Force, May 2013. [Online]. Available: http:
/Iwww.ietf.org/rfc/rfc6951.txt

[30] T. Phelan, G. Fairhurst, and C. Perkins, “DCCP-UDP: A Datagram
Congestion Control Protocol UDP Encapsulation for NAT Traversal,”
RFC 6773 (Proposed Standard), Internet Engineering Task Force, Nov.
2012. [Online]. Available: http://www.ietf.org/rfc/rfc6773.txt

[31] R. Davoli and M. Goldweber, “msocket: Multiple Stack Support for the
Berkeley Socket APL” in The 27" Symposium On Applied Computing,
Riva Del Garda, Trento, Italy, Mar. 2012.

[32] S. Bocking, “Sockets++: A Uniform Application Programming Inter-
face for Basic-Level Communication Services,” IEEE Communications
Magazine, vol. 34, pp. 114-123, Dec. 1996.

[33] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making Middleboxes Someone Else’s Problem: Network
Processing as a Cloud Service,” ACM SIGCOMM Comp. Comm. Review,
vol. 42, no. 4, pp. 13-24, 2012.

[34] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An Untold Story of
Middleboxes in Cellular Networks,” in ACM SIGCOMM Comp. Comm.
Review, vol. 41, no. 4. ACM, 2011, pp. 374-385.

[35] D. Wing, S. Cheshire, M. Boucadair, R. Penno, and P. Selkirk, “Port
Control Protocol (PCP),” RFC 6887 (Proposed Standard), Internet
Engineering Task Force, Apr. 2013, Updated by RFCs 7488, 7652.
[Online]. Available: http://www.ietf.org/rfc/rfc6887.txt

[36] IETF. Transport Services (TAPS) Charter. https://datatracker.ietf.org/wg/
taps/charter/.

[37] G. Fairhurst (ed.), B. Trammell (ed.), and M. Kuehlewind (ed.),
“Services provided by IETF transport protocols and congestion
control mechanisms,” Internet Draft draft-ietf-taps-transports, work

in progress, Jan. 2016. [Online]. Available: https:/tools.ietf.org/html/
draft-ietf-taps-transports
[38] M. Welzl, M. Tiixen, and N. Khademi, “On the Usage of Transport
Service Features Provided by IETF Transport Protocols,” Internet Draft
draft-ietf-taps-transports-usage, Work in Progress, Jan. 2016. [Online].
Available: https://tools.ietf.org/html/draft-ietf-taps-transports-usage
[39] NEAT, “NEAT Project,” https://github.com/NEAT-project, 2016.

