
NEAT – A New Evolutive API and Transport-Layer
Architecture for the Internet

Karl-Johan Grinnemo1, Tom Jones2, Gorry Fairhurst2, David Ros3, Anna Brunstrom1, and Per Hurtig1

1Karlstad University, Karlstad, Sweden , Email: {karl-johan.grinnemo,anna.brunstrom,per.hurtig}@kau.se
2University of Aberdeen, Aberdeen, U.K. , Email: {tom,gorry}@erg.abdn.ac.uk

3Simula Research Laboratory, Oslo, Norway , Email: dros@simula.no

Internet Transport is Ossified
Pre-print version of article published in IEEE Wireless Communications Magazine, October 2009

Figure 1: Innovation and Ossification in the Internet

Limited Support of Mobile and Wireless Terminals

While the Internet was designed for stationary computers, today laptops and smart phones are constantly on the
move. With today's technology, a laptop changes its address and reconnects as it moves from one wireless network
or access point to another, disrupting the data flow. Alternatively, the Internet standard Mobile IP allows routing all
traffic back to the first access point as a laptop moves to a second or a third location, but delays and inefficiencies
could result. As a clean slate solution, the address system would have to be restructured so that addresses are based
more on the device and less on the location. This way, a laptop could retain its address even if it moves from one
wireless network or access point to the other.

Lack of Built-in Security

With the evolution towards Internet-based services, traditional telecom networks as backup for mission-critical
services are expected to gradually disappear. Therefore, built-in security mechanisms are one of the main goals of
Future Internet design.

The Internet was designed to be open and flexible, and all users were assumed to be trustworthy. Thus, the
Internet protocols were not designed to authenticate users and their data, allowing spammers and hackers to easily
cover their tracks by attaching fake return addresses onto data packets. Internet applications such as firewalls and
spam filters attempt to control security threats. But because such techniques don't penetrate deep into the network,
bad data still get passed along, clogging systems and possibly fooling the filtering technology.

The network would have to be redesigned to be sceptical of all users and data packets from the start. Data would
not be passed along unless the packets are authenticated. Faster computers today should be able to handle the
additional processing required within the network.

Scalability Issues

In addition, the vision is also under threat from basic engineering problems. The routing system, which is the
single most critical part of the Internet infrastructure, is facing significant scalability issues [4]. At just the time
when the Internet is becoming critical infrastructure, the core protocols may become increasingly fragile as more
manual configuration is needed to avoid cascading problems due to overload, accidental mis-configuration or attack.
The IPv6 standard allows expanding the address pool, but nearly a decade after most of the standard was completed,
the vast majority of software and hardware still use the older IPv4 technology. Even if more migrate to IPv6, not all

Reasons:
•Middleboxes, e.g., NATs
• The Sockets API
•Obsolete IP options
• ...

Point Solutions

•Virtual network overlays
– Hide the underlying network from the

transport
•Application-layer transport enhancements

(e.g., middleware)
– Fairly complex and limited scope
•Application-level transport protocols

(e.g., QUIC)
– Target a particular category of applica-

tions
• Sockets API extensions

– Not deployable and evolvable

New Transport

•Deployable
– Independent of particular software and

technologies
• Evolvable

– Permit parts (e.g., protocols) to be added
as needed

– Loose coupling of parts
• Flexible API

– Higher abstraction level than the Sockets
API

– Offers a transport service

Overview NEAT Architecture

TCP UDP SCTP

APP Class 0 APP Class 1 APP Class 2 APP Class 3

TCP Minion Experimental
Mechanisms

Traditional Socket NEAT Socket

Middleware

NEAT Framework

NEAT User API

NEAT APP Support
API

NEAT
Policy

ManagerUSER

KERNEL

Policy
Information

Base

Characteristic
Information

Base

Policy Interface

SCTP/UDP

APP Class 4

PCAP RAW IP Experimental
Mechanisms

KPI

Selection
Components

H and S
Components

NEAT APP Support
Module

IP

DIAG &
STATS

NEAT Kernel
Module

Policy Interface

Transport
Components

SCTP/
UDP

SPUD/
UDP…

Userspace Transport
Exp

Mech

Two parts:
•High-Level Transport System

– Often uses low-level transport system
• Low-Level Transport System

– Essential for the creation, utilisation, and
evolution of NEAT

Low-Level Transport System

Middlebox
Traversal

Happy Eyeballs
(SCTP/TCP,
IPv4/IPv6)

NEAT Flow Endpoint
Statistics

Callback-based
NEAT API

Framework

Security
(DTLS/SCTP or

TLS/TCP)
Connect to a

name

NEAT Logic

NEAT Flow
Endpoint

Policy
Interface (PI)

NEAT
Framework

Components

NEAT
Transport

Components

NEAT
Selection

Components

Policy
Components

CIB
source
format

Policy file
format

PIB

NEAT Policy Manager
CIB

Remarks:
•NEAT Flow Endpoint ≈ TCB
•NEAT Logic orchestrates the transport sys-

tem
•NEAT Policy components administer appli-

cation and network policies and comprise:
– NEAT Policy Manager
– Policy Information Base (PIB)
– Characteristics Information Base (CIB)
•Connect to a name is the NEAT address re-

solver and provide the following features:
– Asynchronous DNS lookup
– Address monitoring
– Multi-homing support
– Private network marking
•Happy Eyeballs handles transport selection

NEAT API Framework

• Implements a callback-based API
• The base is an event loop
• Built on top of libuv

NEAT API Example

s t a t i c s t r u c t n e a t f l o w o p e r a t i o n s ops ;

s t a t i c n e a t e r r o r c o d e
on error (s t r u c t n e a t f l o w o p e r a t i o n s ∗opCB)
{

e x i t (EXIT FAILURE) ;
}

s t a t i c n e a t e r r o r c o d e
on connected (s t r u c t n e a t f l o w o p e r a t i o n s ∗opCB)
{

opCB−>o n a l l w r i t t e n = o n a l l w r i t t e n ;
opCB−>on readable = on readable ;
re turn NEAT OK;

}

i n t
main (i n t argc , char ∗argv [])
{

i f ((c t x = n e a t i n i t c t x ()) == NULL) {
debug error (” could not i n i t i a l i s e contex t ”) ;
r e s u l t = EXIT FAILURE ;
goto cleanup ;

}

// new neat flow
i f ((flow = neat new flow (c t x)) == NULL) {

debug error (” neat new flow ”) ;
r e s u l t = EXIT FAILURE ;
goto cleanup ;

}

// s e t c a l l b a c k s
ops . on connected = on connected ;
ops . on error = on error ;

i f (n e a t s e t o p e r a t i o n s (ctx , flow , &ops)) {
debug error (” n e a t s e t o p e r a t i o n s ”) ;
r e s u l t = EXIT FAILURE ;
goto cleanup ;

}

// wait f o r on connected or on error to be invoked
i f (neat open (ctx , flow , argv [argc − 2] ,

argv [argc − 1]) == NEAT OK) {
n e a t s t a r t e v e n t l o o p (ctx , NEAT RUN DEFAULT) ;

} e l s e {
debug error (” neat open ”) ;
r e s u l t = EXIT FAILURE ;
goto cleanup ;

}

. . .
}

Ongoing and Future Work

• Implement libNEAT library
• Evaluate performance of libNEAT

– E.g., Happy Eyeballs
• Transport Protocol Enhancements

– E.g., multipath scheduling
• Transport System Extensions

– E.g., transport selection

