
NEAT – A New, Evolutive API and
Transport-Layer Architecture for the Internet

Karl-Johan Grinnemo†, Tom Jones?, Gorry Fairhurst?, David Ros‡, Anna Brunstrom† and Per Hurtig†
†Karlstad University, Karlstad, Sweden

{karl-johan.grinnemo, anna.brunstrom, per.hurtig}@kau.se
?University of Aberdeen, Aberdeen, U.K.

{tom, gorry}@erg.abdn.ac.uk
‡Simula Research Laboratory, Oslo, Norway

dros@simula.no

Abstract—There is a growing concern that the Internet trans-
port layer has become ossified in the face of emerging novel appli-
cations, and that further evolution has become very difficult. This
paper identifies requirements for a new transport layer and then
proposes a conceptual architecture, the NEAT system, that we
believe is both flexible and evolvable. Applications interface the
NEAT system through an enhanced user API that decouples them
from the operation of the transport protocols and the network
features being used. In particular, applications provide the NEAT
system with information about their traffic requirements, pre-
specified policies, and measured network conditions. On the basis
of this information, the NEAT system establishes and configures
appropriate connections.

Index Terms—Transport layer, ossification, application-aware
networking, transport API, Internet architecture.

I. INTRODUCTION

Introducing new transports in the Internet has become more
or less impossible. This seems to be the experience for all new
transport protocols that have been designed. Even protocols
implemented in networking stacks, such as UDP-Lite [1],
SCTP [2], and DCCP [3], have still failed to be widely
used across the Internet. The most significant obstacle to
evolution has been the deployment by operators of Network
Address Translation (NAT) (strictly speaking NAT with port
translation). These devices were originally introduced to ad-
dress the growing shortage of IPv4 addresses, but are also
perceived to have benefits in providing flexibility in the use of
addresses and some element of security to devices behind the
NAT. At the same time, the transport application programming
interface (API) offered by operating systems has also become
ossified and unable to adapt to the needs of novel applications.
The ubiquity of TCP and UDP has meant that APIs typically
tie applications to a priori choices of protocol. Or at the very
least, application developers only invest in providing support
to use these two protocols.

To address this issue, transport protocol designers have more
recently proposed development of application-layer transport
protocols that use the current underlying transport layer as a
communication substrate, e.g., QUIC [4] that uses UDP as
a substrate, and the Minion suite of transport protocols [5]
that use TCP or UDP as substrates. Still, these protocols are
in many ways only point solutions: QUIC primarily targets

web traffic and Minion datagram services. SPUD [6] is a new
initiative that also tries to use a UDP substrate to enable faster
transport evolution.

This paper argues that there needs to be a more complete
solution to the ossification problem. It proposes a design that
can decouple applications from the choice of actual transport
protocol being used, and enable applications to explicitly
communicate their service requirements via a new transport
API, with the transport protocol and options being selected at
run-time. This change opens up for a more flexible transport
solution that enables new network and transport functions
and services to be added incrementally and transparently. Our
proposal builds on previous work that has recognized the value
of a higher layer transport interface (e.g., [7], [8]) where it
can improve use of the network layer and take advantage of
capabilities offered by different network paths. We extend this
approach to a more complete solution that can enable transport
protocol evolution across the Internet.

The remainder of the paper is organized as follows. Sec-
tion II discusses the requirements that need to be fulfilled by
a new transport system. A conceptual architecture addressing
these issues is detailed in Section III. The paper concludes
in Section IV with a brief discussion of how we intend to
continue our efforts in designing and developing this system.

II. TRANSPORT REQUIREMENTS

The requirements for a new transport system must be well
designed to offer a remedy to the present ossification problem:

a) Deployable: A key requirement is that any new trans-
port system is itself deployable. Its design must be independent
of the operating system and particular network technologies.
As an implication of this, it should not rely on protocols
or features that are only available on certain host operating
systems, or expect applications to include special mechanisms.
Instead, these should be an integral part of the transport system
itself.

b) Evolvable: A transport system must be evolvable and
permit independent evolution of its components, allowing new
mechanisms and protocols to be added as required, and for
applications to benefit from new features as infrastructure
evolves. We recognize that middleboxes (including home



NEAT User API

NEAT User Module
NEAT 
Policy 

Manager

User Space Transport

QUIC SCTP New 
Transport

UDP TCP SCTP Minion New 
Transport

USER

KERNEL

IPv4/IPv6

Application

Fig. 1. The NEAT Architecture.

gateway NATs) have become an integral part of the Internet,
and a transport system has to be able to discover whether any
new solution works across a middlebox-encumbered path.

c) Present a new API: A new API should offer a higher
abstraction than the present sockets API, ideally allowing ap-
plications to specify their transport service needs, rather than
configuring a specific transport protocol instance. This allows
the transport system to have the option of deciding which
transport protocol to use and how it should be configured.

III. THE NEAT SYSTEM

To address the requirements imposed on a new transport
system, this paper proposes a comprehensive transport archi-
tecture, a New, Evolutive API and Transport-layer architecture
for the Internet (NEAT). An overview of the NEAT architec-
ture is given in Fig. 1.

NEAT offers an enhanced API for applications to access
transport services. The User Module is designed to be portable
across different operating systems and network stacks. It
comprises five groups of components (see Fig. 2): Framework,
Selection, Policy, Transport, and Signaling.

NEAT includes a set of protocol mechanisms that takes care
of middlebox traversal and protocol selection, accompanied
with a fallback service when paths are incapable of supporting
the chosen protocol. NEAT has an evolvable architecture that
opens up for new transport services and can enable interaction
with network devices to improve the transport service. NEAT
also enables the incremental introduction of new transport
protocols: both in the kernel and in user space.

The Framework components provide the functionality re-
quired to use the NEAT System. They define the structure of
the User API and interfaces to the logic that implements the
core mechanisms. Applications provide information about the
requirements for a desired transport service via the API. The

User API

Framework Selection Policy Transport Signaling

Fig. 2. The NEAT User Module.

framework also includes components for diagnostic, debug-
ging and measurement. The additional information reported
by NEAT can be used to identify which components in NEAT
are in use, and how components have been configured.

The Selection components choose an appropriate transport
endpoint and a set of candidate transport components. The
additional API information enables the NEAT System to
move beyond the constraints of the traditional socket API,
making the stack aware of what is actually desired or required
for each traffic flow. This is combined with inputs from a
Policy Manager (see below). After identification of candidate
services, it will test the suitability of the candidates, utilizing
information known about the path, and by attempting to make
endpoint connections.

The Policy components comprise the Policy Information
Base (PIB), the Characteristics Information Base (CIB), and
the Policy Manager. The PIB is a repository that contains
a collection of policies, where each policy consists of a set
of rules linking a set of matching requirements to a set
of preferred or mandatory transport characteristics. Policies
can be added by the system administrator, external entities
or applications, and have different priorities. The CIB is
a repository storing information about available interfaces,
supported protocols, network properties and current/previous
connections between endpoints.

The Policy Manager enables a set of rules to specify the



transport protocol to use for a particular transport service,
the configuration of the selected transport protocol, etc.,
implemented in the PIB. In contrast, acquired knowledge
about endpoints and the network, evolves over time, and is
stored in the CIB. This enables the Policy Manager to cache
characteristics allowing future flows to benefit from previous
flow experience.

Together, Selection and Policy enable applications to be
designed and implemented to be oblivious to the transport pro-
tocols of a particular platform. They facilitate NEAT to make
an appropriate decision based on application requirements and
what is made available for a network endpoint. Making these
decisions at run time rather than at application-design time,
ensures that an appropriate choice is made, provides opportuni-
ties to consider multiple, possibly conflicting, constraints, and
avoids each application having to code for the possibility that
a path does not support a particular mechanism or combination
of mechanisms.

The Transport components are responsible for providing
functions to instantiate the transport service for a particular
flow in NEAT. Transport provides a set of transport protocols,
e.g., TCP, UDP, SCTP, TLS, DTLS, etc., and other components
to realize a transport service. While the selection of transport
protocols are handled by the Selection components, the Trans-
port components are responsible for configuring and managing
the transport protocols.

The Signaling components can provide advisory signaling
to complement the functions of Transport. This could include
communication with middleboxes, support for failover and
handover and other mechanisms. There are two types of
signaling: transport and network. Transport signaling enables
the exchange of capability information between NEAT end-
points, and provides input to the Policy Manager concerning
what capabilities a peer endpoint supports. Network signaling
communicates with devices along the network path. This could
be as simple as the distribution of Differentiated Services
Code Points, network signaling messages that can assist in
applications or transports to choose to up-speed or down-
speed for transports, through to something as complex as QoS
negotiation.

Placing optional network signaling below the transport API
can allow applications to indicate how/whether they would
like to use network signaling, without requiring each appli-
cation to be updated each time a new signaling protocol is
introduced. The NEAT system can determine the appropriate
signaling mechanisms to use on a path to a particular endpoint.
Freeing applications from choosing and supporting signaling
protocols is expected to reduce the barriers to introducing new
mechanisms in the network, allowing signaling messages to
be exchanged with network devices as such new signaling
protocols emerge and become supported across the network.

Just as a higher-level transport API decouples transport and
interface selection (e.g., to offer potential for services to evolve
independently of applications), so also there can be benefits in
the way that transports interact with the network. For example,
when UDP is used to encapsulate a transport that does not

have widespread network support (e.g., SCTP, or any new
transport), the NEAT system can select one of a number of
signaling protocols (e.g., Port Control Protocol (PCP) [9]) to
coordinate with local mappings in a firewall/NAT ensuring
that the local network device keeps state while a transport
protocol connection remains active. Similarly, a future trans-
port protocol could benefit from signaling received about a
path’s congestion, disruption, or some other characteristic—
all of which can be interpreted within the context of the
transport connection. The higher abstraction of the transport
API therefore not only enables flexibility, it can provide a path
to future evolution of the transport layer.

IV. CONCLUSION

This paper has examined the requirements for a new trans-
port system and proposed a conceptual architecture, NEAT,
which we think can break the current ossification of the
Internet transport architecture. In this architecture, applications
will interface through an enhanced API that decouples them
from the choice of transport protocol and network features to
be used. We are currently implementing the main parts of the
NEAT system, and use this to explore performance in actual
networks. The source code for our NEAT system is available
on GitHub [10].

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 644334 (NEAT). The views expressed are
solely those of the authors.

REFERENCES

[1] L.-A. Larzon, M. Degermark, S. Pink, L.-E. Jonsson, and G. Fairhurst,
“The Lightweight User Datagram Protocol (UDP-Lite),” RFC 3828
(Proposed Standard), Internet Engineering Task Force, Jul. 2004,
Updated by RFC 6335. [Online]. Available: http://www.ietf.org/rfc/
rfc3828.txt

[2] R. Stewart, “Stream Control Transmission Protocol,” RFC 4960
(Proposed Standard), Internet Engineering Task Force, Sep. 2007,
Updated by RFCs 6096, 6335, 7053. [Online]. Available: http:
//www.ietf.org/rfc/rfc4960.txt

[3] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” RFC 4340 (Proposed Standard), Internet Engineering
Task Force, Mar. 2006, Updated by RFCs 5595, 5596, 6335, 6773.
[Online]. Available: http://www.ietf.org/rfc/rfc4340.txt

[4] J. Roskind, “Quick UDP Internet Connections,” Google, Tech. Rep.,
Apr. 2012.

[5] M. F. Nolan, N. Tiwari, J. Iyengar, S. O. Amin, and B. Ford, “Fit-
ting Square Pegs Through Round Pipes: Unordered Delivery Wire-
Compatible with TCP and TLS,” in USENIX NSDI, San Jose, CA, U.S.,
Apr. 2012.

[6] M. Kuehlewind and B. Trammell, “SPUD Use Cases,” Jul. 2015.
[7] B. D. Higgins, A. Reda, T. Alperovich, and J. Flinn, “Intentional

Networking: Opportunistic Exploitation of Mobile Network Diversity,”
in The 16th Annual International Conference on Mobile Computing and
Networking, Chicago, IL, U.S., Sep. 2010.

[8] P. S. Schmidt, T. Enghardt, R. Khalili, and A. Feldmann, “Socket Intents:
Leveraging Application Awareness for Multi-Access Connectivity,” in
ACM CoNEXT, Santa Barbara, CA, U.S., Dec. 2013.

[9] D. Wing, S. Cheshire, M. Boucadair, R. Penno, and P. Selkirk, “Port
Control Protocol (PCP),” RFC 6887 (Proposed Standard), Internet
Engineering Task Force, Apr. 2013, Updated by RFCs 7488, 7652.
[Online]. Available: http://www.ietf.org/rfc/rfc6887.txt

[10] NEAT, “NEAT Project,” https://github.com/NEAT-project, 2016.


