
NEAT
A New, Evolutive API and Transport-Layer Architecture for the Internet

H2020-ICT-05-2014
Project number: 644334

Deliverable D2.1
First Version of Low-Level Core Transport System

Editor(s): Naeem Khademi
Contributor(s): Zdravko Bozakov, Anna Brunstrom, Dragana Damjanovic, Kristian Riktor Evensen,

Gorry Fairhurst, Karl-Johan Grinnemo, Tom Jones, Simone Mangiante,
Giorgos Papastergiou, David Ros, Michael Tüxen, Michael Welzl

Work Package: 2 / Core Transport System
Revision: 1.0
Date: March 1, 2016
Deliverable type: R (Report)
Dissemination level: Public

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

Abstract

This document presents the first version of the low-level Core Transport System in NEAT,

to be used for development of a reference implementation of the NEAT System. The design

of this core transport system takes into consideration the Transport Services and the API

defined in Task 1.3 and in close coordination with the overall architecture (Task 1.2). To

realise the basic Transport Services provided by the API, a set of low-level transport func-

tionalities has to be provided by the NEAT core transport system. These functionalities take

the form of several building blocks, or NEAT Components, each representing an associated

implementation activity. Some of the components are needed to ensure the basic opera-

tion of the NEAT System—e.g., a NEAT Flow Endpoint, a callback-based NEAT API Frame-

work, the NEAT Logic and the functionality to Connect to a name. Some other components

are needed to ensure connectivity using Middlebox Traversal techniques (e.g., TURN), dis-

covery of path support for different transport protocols using Happy Eyeballs mechanisms,

offering end-to end Security (e.g., (D)TLS over transport), gather statistics for the users or

system administrators, and the ability to apply different policies in order to influence the

decision-making process of the transport system. This document describes each of these

building blocks and related design choices.

Participant organisation name Short name

Simula Research Laboratory AS (Coordinator) SRL

Celerway Communication AS Celerway

EMC Information Systems International EMC

MZ Denmark APS Mozilla

Karlstads Universitet KaU

Fachhochschule Münster FHM

The University Court of the University of Aberdeen UoA

Universitetet i Oslo UiO

Cisco Systems France SARL Cisco

2 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

Contents

List of Abbreviations 4

1 Introduction 6

1.1 Low-level and high-level functions . 6

1.2 Overview of the NEAT Architecture . 6

1.3 Overview of the services provided by the NEAT API . 8

1.4 Overview of the low-level components required to provide the services 8

2 Low-level Transport Functions 9

2.1 NEAT Framework Components . 10

2.1.1 NEAT Flow Endpoint . 10

2.1.2 NEAT API Framework (callback) . 14

2.1.3 NEAT Logic . 18

2.1.4 Connect to a name . 19

2.1.5 NEAT Flow Endpoint Statistics . 20

2.2 NEAT Transport Components . 21

2.2.1 Middlebox Traversal . 22

2.2.2 Security . 23

2.3 Selection Components . 24

2.3.1 Happy Eyeballs . 25

2.4 Policy Components . 26

2.4.1 NEAT Policy Manager . 27

2.4.2 Policy Information Base (PIB) . 29

2.4.3 Characteristics Information Base (CIB) . 32

3 Conclusions 34

References 37

A NEAT Terminology 38

3 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

List of Abbreviations

AAA Authentication, Authorisation and Accounting

AAAA Authentication, Authorisation, Accounting and Auditing

API Application Programming Interface

CIB Characteristics Information Base

DCCP Datagram Congestion Control Protocol

DNS Domain Name System

DNSSEC Domain Name System Security Extensions

DSCP Differentiated Services Code Point

DTLS Datagram Transport Layer Security

ECN Explicit Congestion Notification

ENUM Electronic telephone number mapping

HTTP HyperText Transfer Protocol

IAB Internet Architecture Board

ICE Internet Connectivity Establishment

IETF Internet Engineering Task Force

IF Interface

IGD-PCP Internet Gateway Device – Port Control Protocol

IP Internet Protocol

IRTF Internet Research Task Force

KPI Kernel Programming Interface

LAN Local Area Network

LBE Less than Best Effort

MIF Multiple Interfaces

MPTCP Multipath Transmission Control Protocol

MTU Maximum Transmission Unit

NAT Network Address (and Port) Translation

NEAT New, Evolutive API and Transport-Layer Architecture

OS Operating System

PCP Port Control Protocol

4 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

PDU Protocol Data Unit

PI Policy Interface

PIB Policy Information Base

PM Policy Manager

POSIX the Portable Operating System Interface

PMTU Path MTU

QoS Quality of Service

RFC Request for Comments

RTT Round Trip Time

RTP Realtime Protocol

RTSP Realtime Streaming Protocol

SCTP Stream Control Transmission Protocol

SCTP-CMT Stream Control Transmission Protocol – Concurrent Multipath Transport

SCTP-PF Stream Control Transmission Protocol – Potentially Failed

SCTP-PR Stream Control Transmission Protocol – Partial Reliability

SDN Software-Defined Networking

SDP Session Description Protocol

SIP Session Initiation Protocol

SLA Service Level Agreement

SPUD Session Protocol for User Datagrams

STUN Simple Traversal of UDP through NATs

TCB Transmission Control Block

TCP Transmission Control Protocol

TCPINC TCP Increased Security

TLS Transport Layer Security

TTL Time To Live

TURN Traversal Using Relays around NAT

UDP User Datagram Protocol

UPnP Universal Plug and Play

URI Uniform Resource Identifier

VPN Virtual Private Network

WAN Wide Area Network

5 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

1 Introduction

The NEAT System aims to change the transport layer interface in a way that Internet applications

could specify and select a variety of Transport Services, instead of specifying a transport protocol. The

Transport Services to be provided by the NEAT System and the API needed to achieve the above goal

are outlined in Deliverable D1.2 [14]. The NEAT Core Transport System plays a vital role in translating

the Transport Services exposed by the NEAT User API into protocol-level function calls, as well as in

supporting a variety of transport-layer mechanisms that provide such Transport Services1.

We denote as Low-Level Core Transport System the set of the most basic building blocks necessary

to provide NEAT Transport Services described in D1.2. These include mechanisms for ensuring end-

to-end connectivity, discovery of path support for protocol(s) chosen by the NEAT System, end-to-end

security, ability to select different system policies depending on the application or network scenarios,

and finally the ability to expose connection-level or system-wide statistics to an application.

This document reports on the first version of the low-level transport system being implemented

in NEAT. The rest of this section provides a general discussion of low-level and high-level functions

(§ 1.1), as well as a short overview of the NEAT architecture introduced in D1.1 [8] (§ 1.2). It also

discusses the Transport Services provided by NEAT (§ 1.3), and briefly presents the basic building

blocks, or NEAT Components, that comprise the low-level core transport system (§ 1.4).

Section 2 discusses each of the low-level components in detail, identifies the Transport Services

they provide as well as their dependency on other components in the NEAT System, and provides

examples of their operation when necessary. Finally, Section 3 draws conclusions from this document

and points at future work as part of Work Package 2.

1.1 Low-level and high-level functions

The NEAT System is a large and complex system comprising a plethora of components that need to

interact with each other, which aims to provide a wide range of Transport Service Features in a flexible

and evolvable way. To effectively handle the complexity of the NEAT System and facilitate the devel-

opment of its reference implementation, a conceptual framework of two levels of abstraction has been

considered for the design and development of its core transport system. In this context, the NEAT core

transport system is composed of two different sets of building blocks: low-level components that com-

prise the Low-Level Core Transport System and high-level components that comprise the High-Level

Core Transport System.

Low-level building blocks implement a set of fundamental functions (low-level functions) that are

essential for the creation, utilisation and evolution of the NEAT System. These functions do not build

upon any high-level functions and exhibit the lowest possible level of abstraction. High-level build-

ing blocks implement more advanced functions (high-level functions) that are normally built upon

the low-level building blocks and present a higher level of abstraction; this means, realising a high-

level transport functionality typically involves selecting and combining the proper low-level transport

functionalities available on the system.

1.2 Overview of the NEAT Architecture

The NEAT System is a layered architecture that provides a flexible and evolvable transport system. The

applications and middleware served by the NEAT System utilise a new NEAT User API that abstracts
1For more details about NEAT-specific terminology, please refer to Appendix A.

6 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

Traditional Socket NEAT Socket

NEAT User API

USER

KERNEL KPI

NEAT
Framework

Components

NEAT
Selection

Components
NEAT Policy
Components

NEAT
Transport

Components

NEAT Signalling
and Handover
Components

Di
ag

no
st

ic
s

an
d

St
at

is
tic

s

Policy Interface

Figure 1: Component groups and interfaces used to realise the NEAT User Module.

TCP UDP SCTP

APP Class 0 APP Class 1 APP Class 2 APP Class 3

TCP Minion Experimental
Mechanisms

Traditional Socket NEAT Socket

Middleware

NEAT Framework

NEAT User API

NEAT APP Support
API

NEAT
Policy

ManagerUSER

KERNEL

Policy
Information

Base

Characteristic
Information

Base

Policy Interface

SCTP/UDP

APP Class 4

PCAP RAW IP Experimental
Mechanisms

KPI

Selection
Components

H and S
Components

NEAT APP Support
Module

IP

DIAG &
STATS

NEAT Kernel
Module

Policy Interface

Transport
Components

SCTP/
UDP

SPUD/
UDP…

Userspace Transport
Exp

Mech

Figure 2: Components and interfaces to the NEAT System. The NEAT User Module is composed of all
the blocks shown in light blue (NEAT Framework, NEAT Transport, NEAT Selection, NEAT Signalling
and Handover, and Policy Components) and related APIs (NEAT User API, Policy Interface, Diagnostics
and Statistics Interface).

network transport. The NEAT System can provide Transport Services in a way that allows the best

transport protocol to be used by an application without the application having to handle selection

from application code.

The main part of the NEAT System is the NEAT User Module, depicted in Figure 1. It provides a

set of components necessary to realise a Transport Service provided by the NEAT System. It is imple-

mented in user-space and is intended to be portable across a wide range of platforms.

Figure 2 provides a more detailed overview of the different parts of the NEAT System and its inter-

faces. Applications access the NEAT System via a NEAT User API and its associated interfaces. The

NEAT User API offers Transport Services similar to those offered by the socket API, but using an event-

driven style of interaction. The NEAT User API provides the necessary information to allow the NEAT

System to select an appropriate Transport Service.

The NEAT User API provides the interface to the NEAT User Module. This API and its associated

Diagnostics and Statistics Interface are formally one part of a group of components that comprise the

7 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

NEAT Framework. Other components in this group are responsible for the most basic functions of the

NEAT User Module.

A group of components are responsible for the Selection of the Transport Service, these use the

services of the NEAT Policy Manager, which describes high-level components that inform selection

and enforce policy for decisions. The policy information is combined with the information passed

via the NEAT User API and mechanisms to probe/signal to complete selection of the protocols and

mechanisms needed to realise the required Transport Service.

The components required to configure and manage the Transport Service also form a part of the

NEAT User Module. Some protocols (such as TCP and UDP) are typically provided by the kernel of

the platform OS. Other transport protocols are provided in user-space, but may optionally also be

provided by the kernel. A key goal of the NEAT System is to offer Transport Services in the same way

regardless of how the transport protocols have been implemented or how they are offered by the OS

network stack. The NEAT User Module can utilise optional signalling components, implemented in

the NEAT Signalling and Handover components.

The NEAT System can evolve to incorporate new and experimental transports. It will allow appli-

cations to take advantage of new functionality as it becomes available across the Internet and will fall

back and emulate features required by applications when other alternatives are not available.

The Kernel interfaces and experimental mechanisms, highlighted in Figure 2 in dark blue and

green respectively, are optional components of the NEAT System.

The layered design of the NEAT System enables it to offer optimised transports to applications that

would normally have to supply compatibility layers or the entire transport as a library.

1.3 Overview of the services provided by the NEAT API

Internet drafts from the IETF TAPS working group [7, 13], co-authored by NEAT participants, define

a Transport Service as an end-to-end service provided to an application by the transport layer, and

a Transport Service Feature as a specific end-to-end feature that a Transport Service provides to its

clients.

Deliverable D1.2 [14] presents two sets of Transport Service Features: (a) Transport Service Features

derived from draft-ietf-taps-transports-usage [13]; and (b) Transport Service Features derived from

use cases in D1.1 [8]. Set (a) includes Transport Service Features that can be utilised using primitives

and events derived from transport-protocol APIs. This includes TCP and SCTP in the current version

and will be extended to cover more transport protocols in the future. Set (b) includes Transport Service

Features that stem from application requirements of the use cases in D1.1 and are composed of two

groups: (1) Transport Service Features that are associated with the information passed from the NEAT

System to the application; and (2) Transport Service Features that are associated with the information

passed from the application to the NEAT System.

The low-level core transport system is the set of components necessary to provide a “platform” to

implement these Transport Service Features. We will summarise them in Section 1.4 and provide a

more elaborate description in Section 2.

1.4 Overview of the low-level components required to provide the services

To offer the Transport Service Features presented in D1.2 [14], a set of low-level components are

needed for the NEAT core transport system. These building blocks do not provide by themselves the

8 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

full range of Transport Service Features described in D1.2, but they are essential for the core opera-

tion of the NEAT System . This makes it possible for the NEAT developers to provide more Transport

Service Features as the transport system evolves during the project. The list of core building blocks

will be extended in D2.2 (expanding the low-level core transport system if needed, and including the

high-level core transport system) and finalised in D2.3.

Based on the sets of NEAT Components defined in D1.1, the low-level core components are cate-

gorised into:

• NEAT Framework components: a set of components that provide the most basic functionality

required to run a NEAT System. These include the following building blocks: a NEAT Flow End-

point, a callback-based NEAT API Framework, NEAT Logic, the ability to Connect to a name and

NEAT Flow Endpoint Statistics.

• NEAT Transport components: a set of components responsible for providing the functions to

configure and manage the NEAT Transport Service for a particular NEAT Flow. These building

blocks ensure connectivity using Middlebox Traversal mechanisms, by employing NAT traversal

techniques such as TURN [11]. These also include the possibility to use DTLS over SCTP as well

as TLS over TCP when Security is being requested.

• NEAT Selection components: these components are responsible for selecting an appropriate

transport endpoint and a set of protocols/mechanisms. These include building blocks for path

support discovery using Happy Eyeballs mechanisms. Happy Eyeballs can be done between dif-

ferent transport protocols (e.g., SCTP/TCP) or IP versions (IPv4/IPv6).

• NEAT Policy components: a set of components providing the possibility to manage and apply

different policies. These building blocks include: a NEAT Policy Manager (PM), a Policy Informa-

tion Base (PIB), a Characteristics Information Base (CIB) and one or multiple CIB sources. The

NEAT Policy Manager uses a Policy Interface (PI) to communicate with the PIB and CIB(s) and

maintains policies defined by the application developer or system developer using a predefined

file format.

Figure 3 illustrates the set of low-level components and their potential dependency on each other.

As seen on the list above, low-level components are found in four out of the five component groupings

in Figure 1 (Framework, Transport, Selection, and Policy); NEAT Signalling and Handover is part of the

Extended Transport System under development in Work Package 3, and therefore out of the scope of

this document.

2 Low-level Transport Functions

This section presents a detailed description of low-level transport functionalities required to realise

the NEAT core transport system based on the components introduced in Section 1.4. Each component

is described in detail and Transport Service Features they provide are specified when applicable2. In-

dicative examples of their operation are given where relevant, and relationships among these building

blocks are identified. This document does not aim to provide all the implementation details, rather,

it intends to present the design choices that have been made. When appropriate, snippets of sample

code in C are used for better presentation.

2The Transport Service Features mentioned in this deliverable are identified in Tables 1 and 2 of Deliverable 1.2 [14].

9 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

Middlebox
Traversal

Happy Eyeballs
(SCTP/TCP,
IPv4/IPv6)

NEAT Flow Endpoint
Statistics

Callback-based
NEAT API

Framework

Security
(DTLS/SCTP or

TLS/TCP)
Connect to a

name

NEAT Logic

NEAT Flow
Endpoint

Policy
Interface (PI)

NEAT
Framework

Components

NEAT
Transport

Components

NEAT
Selection

Components

Policy
Components

CIB
source
format

Policy file
format

PIB

NEAT Policy Manager
CIB

Figure 3: Low-level building blocks for the NEAT low-level core transport system. Each colour denotes
a different component grouping.

2.1 NEAT Framework Components

To run a NEAT System a minimum set of basic building blocks has to be implemented, comprising the

NEAT Framework components. This translates into being able to create a NEAT Flow and connect to

a host using a domain name address, as well as the ability to translate the functionalities behind the

NEAT User API into appropriate function calls, e.g., to different protocols, mechanisms, etc.

Setting up a NEAT Flow can be done by using an event-based, user-space NEAT library that imple-

ments a callback-based API (NEAT API Framework). Once a NEAT Flow is initialised, it will contain a

structure that keeps all of its relevant information during its lifetime (NEAT Flow Endpoint). A NEAT

Flow can be assigned to one or more domain names as well as IP addresses (Connect to a name). The

functionalities behind the NEAT User API requested for the initialised NEAT Flow require code that

“glues” together different components (NEAT Logic). This is not a monolithic chunk of code separated

from other components, but rather code that is scattered throughout other components as well as the

NEAT User API. Finally, gathering statistics and information about the operation of the system is nec-

essary for diagnostics and performance monitoring (NEAT Flow Endpoint Statistics). The operation

of each of these components is presented in the rest of this section.

2.1.1 NEAT Flow Endpoint

The NEAT Flow Endpoint is a NEAT structure that has a similar role to the Transmission Control Block

(TCB) in the context of TCP [4]. This is mainly used by the NEAT Logic to collect information about a

NEAT Flow. Through the NEAT Logic parts of this information are used by most of the other building

blocks (e.g., Policy Manager, Happy Eyeballs, Security, etc.).

A NEAT Flow Endpoint neat_flow structure corresponds to a single operating system socket and

keeps the information about the socket that is relevant during the NEAT Flow’s lifetime (Listing 1).

This includes:

• File descriptor for the underlying OS socket.

• Socket address family (e.g., AF_INET, AF_INET6).

• Socket type (e.g., SOCK_DGRAM, SOCK_STREAM).

• Protocol (e.g., IPPROTO_UDP, IPPROTO_TCP, IPPROTO_SCTP).

10 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

• Remote peer domain name.

• Remote socket address.

• Remote port.

1 struct neat_flow

2 {

3 int fd;

4 uint8_t family;

5 int sockType;

6 int sockProtocol;

7 const char *name;

8 const struct sockaddr *sockAddr;

9 const char *port;

Listing 1: NEAT Flow Endpoint structure.

It also contains information relevant to the NEAT System operations (e.g., DNS resolver outcome)

as well as a backtracking log of NEAT System decisions (e.g., application requirements, connection

attempts) and includes (Listing 2):

• Address resolver results, DNS results.

• Requested properties for the NEAT Flow: these are properties that an application has specified

at the NEAT Flow creation time via the NEAT User API. The available properties in the current

implementation are listed in Table 1 and the relevant code is in Listing 3.

• Attempted properties: the NEAT Policy Manager selects a subset of the application requirements

and translates them into concrete socket configurations. The Happy Eyeballs component will

probe these selected socket configurations. The subset of requirements attempted by Happy

Eyeballs will be stored in the NEAT Flow Endpoint structure.

• Used properties: these are the properties from the list of the requested properties that apply to an

established connection. They are present only if the underlying socket is successfully connected.

11 struct neat_resolver_results *resolver_results;

12 uint64_t propertyMask;

13 uint64_t propertyAttempt;

14 uint64_t propertyUsed;

Listing 2: NEAT Flow Endpoint structure (continued).

1 #define NEAT_PROPERTY_OPTIONAL_SECURITY (1 << 0)

2 #define NEAT_PROPERTY_REQUIRED_SECURITY (1 << 1)

3 #define NEAT_PROPERTY_MESSAGE (1 << 2) // stream is default

4 #define NEAT_PROPERTY_IPV4_REQUIRED (1 << 3)

5 #define NEAT_PROPERTY_IPV4_BANNED (1 << 4)

6 #define NEAT_PROPERTY_IPV6_REQUIRED (1 << 5)

7 #define NEAT_PROPERTY_IPV6_BANNED (1 << 6)

8 #define NEAT_PROPERTY_SCTP_REQUIRED (1 << 7)

9 #define NEAT_PROPERTY_SCTP_BANNED (1 << 8)

11 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

10 #define NEAT_PROPERTY_TCP_REQUIRED (1 << 9)

11 #define NEAT_PROPERTY_TCP_BANNED (1 << 10)

12 #define NEAT_PROPERTY_UDP_REQUIRED (1 << 11)

13 #define NEAT_PROPERTY_UDP_BANNED (1 << 12)

14 #define NEAT_PROPERTY_UDPLITE_REQUIRED (1 << 13)

15 #define NEAT_PROPERTY_UDPLITE_BANNED (1 << 14)

16 #define NEAT_PROPERTY_CONGESTION_CONTROL_REQUIRED (1 << 15)

17 #define NEAT_PROPERTY_CONGESTION_CONTROL_BANNED (1 << 16)

18 #define NEAT_PROPERTY_RETRANSMISSIONS_REQUIRED (1 << 17)

19 #define NEAT_PROPERTY_RETRANSMISSIONS_BANNED (1 << 18)

Listing 3: NEAT Flow properties.

The NEAT System provides a callback-based API to the application. Pointers to the callback func-

tions are kept in the NEAT Flow Endpoint structure (Listing 4). Their usage will be clarified in § 2.1.2.

15 struct neat_flow_operations *operations;

Listing 4: NEAT Flow Endpoint structure (continued).

The flow endpoint structure is used as the main hub for communication with the underlying socket.

Therefore it contains the pointers to the NEAT base loop structure neat_ctx, functions for accessing

the underlying socket, and NEAT Flow internal flags and buffers (the write buffer facilitates preserva-

tion of message boundaries if the selected transport protocol is message-based), see Listing 5.

16 // NEAT base loop structure:

17 struct neat_ctx *ctx;

18 uv_poll_t handle;

19

20 // Functions for accessing the underlying socket:

21 neat_read_impl readfx;

22 neat_write_impl writefx;

23 neat_accept_impl acceptfx;

24 neat_connect_impl connectfx;

25 neat_close_impl closefx;

26 neat_listen_impl listenfx;

27

28 // NEAT internal flags:

29 int firstWritePending : 1;

30 int acceptPending : 1;

31 int isPolling : 1;

32 int ownedByCore : 1;

33 int everConnected : 1;

34 int isDraining : 1;

35

36 // Write buffer:

37 unsigned char *buffered;

38 ssize_t bufferedOffset;

39 ssize_t bufferedSize;

40 ssize_t bufferedAllocation;

41 }

Listing 5: NEAT Flow Endpoint structure (continued).

12 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

Table 1: Description of currently-implemented NEAT Flow properties.

Propertya Description

NEAT_PROPERTY_OPTIONAL_SECURITY If this property is set, security is optional.

NEAT_PROPERTY_REQUIRED_SECURITY If this property is set, security is required. If

NEAT_PROPERTY_OPTIONAL_SECURITY is set as well it

will be ignored.

NEAT_PROPERTY_MESSAGE Requests a message-based protocol. A stream-based protocol

will be used if this property is not set.

NEAT_PROPERTY_IPV4_REQUIRED Only IPv4 addresses will be used. If an IPv4 address is not

present, invoking neat_open will result in an error.

NEAT_PROPERTY_IPV4_BANNED Do not use IPv4 addresses.

NEAT_PROPERTY_IPV6_REQUIRED Only IPv6 addresses will be used. If an IPv6 address is not

present, invoking neat_open will result in an error.

NEAT_PROPERTY_IPV6_BANNED Do not use IPv6 addresses.

NEAT_PROPERTY_SCTP_REQUIRED NEAT System will try only the SCTP protocol.

NEAT_PROPERTY_SCTP_BANNED NEAT System will not try the SCTP protocol.

NEAT_PROPERTY_TCP_REQUIRED NEAT System will try only the TCP protocol.

NEAT_PROPERTY_TCP_BANNED NEAT System will not try the TCP protocol.

NEAT_PROPERTY_UDP_REQUIRED NEAT System will try only the UDP protocol.

NEAT_PROPERTY_UDP_BANNED NEAT System will not try the UDP protocol.

NEAT_PROPERTY_UDPLITE_REQUIRED NEAT System will try only the UDP-Lite protocol.

NEAT_PROPERTY_UDPLITE_BANNED NEAT System will not try the UDP-Lite protocol.

NEAT_PROPERTY_CONGESTION_CONTROL_REQUIRED NEAT System will use a transport protocol that offers conges-

tion control.

NEAT_PROPERTY_CONGESTION_CONTROL_BANNED NEAT System will use a transport protocol that does not offer a

congestion control feature.

NEAT_PROPERTY_RETRANSMISSIONS_REQUIRED NEAT System will use a transport protocol that offers packet re-

transmission.

NEAT_PROPERTY_RETRANSMISSIONS_BANNED NEAT System will use a transport protocol that does not offer a

packet retransmission feature.

a If the same REQUESTED and BANNED (e.g. NEAT_PROPERTY_IPV4_REQUIRED and NEAT_PROPERTY_IPV4_BANNED)

property are set, a call to neat_open will return an error. The same result will be seen if two or

more of NEAT_PROPERTY_SCTP_REQUIRED, NEAT_PROPERTY_TCP_REQUIRED, NEAT_PROPERTY_UDP_REQUIRED and

NEAT_PROPERTY_UDPLITE_REQUIRED are set.

In the current implementation, each NEAT Flow Endpoint structure corresponds to a single oper-

ating system socket and vice versa. When a foreseen extension of using SCTP multi-streaming is added

as part of Work Package 3, a NEAT Flow Endpoint structure could correspond to a single SCTP stream

and multiple NEAT Flows could communicate over a single SCTP socket. A final design decision on

how to implement a server-side socket that listens on multiple ports and uses multiple transport/net-

work protocols has not been made yet; depending on the outcome, the 1-to-1 mapping of a NEAT Flow

and a socket could change in this case as well.

13 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

Provided Transport Service Feature(s): This building block is part of the most basic functionality of

the NEAT System and does not relate to any specific application requirement.

Some examples of the operation: Listing 6 shows an example of how the NEAT Flow Endpoint struc-

ture is used. In this example the Happy Eyeballs will set the remote host address after the host address

is resolved. For simplicity, the address selection process is omitted. The neat_resolver structure

is an internal structure of the NEAT System and it contains two variables: a pointer to the NEAT Flow

Endpoint structure and a pointer to the callback function. At line 18 the address parameter is set and

at line 24 a callback function is called informing of a successful address resolution.

1 static void

2 he_resolve_cb(struct neat_resolver *resolver, struct neat_resolver_results *results,

uint8_t code)

3 {

4 neat_flow *flow = (neat_flow *)resolver->userData1;

5 neat_he_callback_fx callback_fx;

6 callback_fx = (neat_he_callback_fx) (neat_flow *)resolver->userData2;

7

8 if (code != NEAT_RESOLVER_OK) {

9 callback_fx(resolver->nc, (neat_flow *)resolver->userData1, code,

10 0, 0, 0, -1);

11 return;

12 }

13

14 assert (results->lh_first);

15 assert (!flow->resolver_results);

16

17 // In this example use the first address.

18 flow->family = results->lh_first->ai_family;

19 flow->sockType = results->lh_first->ai_socktype;

20 flow->sockProtocol = results->lh_first->ai_protocol;

21 flow->resolver_results = results;

22 flow->sockAddr = (struct sockaddr *) &(results->lh_first->dst_addr);

23

24 callback_fx(resolver->nc, (neat_flow *)resolver->userData1, NEAT_OK,

25 flow->family, flow->sockType, flow->sockProtocol, -1);

26 }

Listing 6: Use of the NEAT Flow Endpoint structure.

Related building blocks:

• NEAT Logic (§ 2.1.3).

2.1.2 NEAT API Framework (callback)

The NEAT System implements a callback-based API. The base of the NEAT System is an event loop that

needs to be initialised before any NEAT functionality can be accessed. NEAT uses libuv [1] as an event

library. Once the NEAT base structure has started, an application can request a connection (create

14 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

NEAT Flow), communicate over it (write data to the NEAT Flow and read received data from the NEAT

Flow) and register callback functions that will be executed upon the occurrence of certain events.

The NEAT System offers several basic functions for accessing a NEAT Flow (Listing 7):

• Creating and destroying a NEAT Flow, i.e., a NEAT Flow Endpoint structure. (§ 2.1.1)

• Functions for getting and setting properties: using these functions, an application can set or

change transport requirements (e.g., reliable transport, low latency, etc.) as well as change run-

time parameters (e.g., flow priority).

• Opening a connection to a remote host: this function starts the NEAT Logic for selecting and

creating the most adequate Transport Service. The outcome of this asynchronous call can be an

on_connected event in case of success, or an on_error event if a failure occurs.

• Opening a NEAT Flow for listening (i.e., server-side socket): this triggers anon_connected event

if a new connection request is received or an on_error event in the case of an error.

• Read and write to a NEAT Flow and through it to the underlying socket: the return values corre-

spond to the return values of the operating system function calls, or of the TLS/DTLS function

calls if secure communication is established.

• Setting callback functions.

1 struct neat_flow *neat_new_flow(struct neat_ctx *ctx);

2 void neat_free_flow(struct neat_flow *flow);

3

4 neat_error_code neat_set_operations(struct neat_ctx *ctx, struct neat_flow *flow,

struct neat_flow_operations *ops);

5 neat_error_code neat_open(struct neat_ctx *ctx, struct neat_flow *flow, const char *

name, const char *port);

6 neat_error_code neat_read(struct neat_ctx *ctx, struct neat_flow *flow, unsigned

char *buffer, uint32_t amt, uint32_t *actualAmt);

7 neat_error_code neat_write(struct neat_ctx *ctx, struct neat_flow *flow, const

unsigned char *buffer, uint32_t amt);

8 neat_error_code neat_get_property(struct neat_ctx *ctx, struct neat_flow *flow,

uint64_t *outMask);

9 neat_error_code neat_set_property(struct neat_ctx *ctx, struct neat_flow *flow,

uint64_t inMask);

10 neat_error_code neat_accept(struct neat_ctx *ctx, struct neat_flow *flow, const char

*name, const char *port);

Listing 7: NEAT API functions.

The NEAT API offers multiple run-time events that call the corresponding functions if registered.

The set of events that are triggered are given in Listing 8.

1 neat_flow_operations_fx on_connected;

2 neat_flow_operations_fx on_error;

3 neat_flow_operations_fx on_readable;

4 neat_flow_operations_fx on_writable;

5 neat_flow_operations_fx on_all_written;

Listing 8: NEAT callback functions.

15 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

In the following, we present a simple illustration of the NEAT Flow connection establishment and

maintenance. Each application needs to initialise the base NEAT structure and before a communi-

cation can start its event loop needs to be started. An application creates a NEAT Flow Endpoint for

each connection. The application specifies its requirement by utilising the neat_set_property and

neat_get_property functions of the NEAT User API called for each individual NEAT Flow Endpoint.

When the application requirements are specified, the connection establishment can be requested by

calling the neat_open function (corresponding to the OPEN primitive from D1.2 [14]). The function

takes a host name and a port number as parameters. On the server side, the neat_accept function

(corresponding to the ACCEPT primitive from D1.2 [14]) will be called with parameters: port number

and local address the socket should be listening to.

These two function calls will trigger a set of actions inside the NEAT System. The specified appli-

cation requirements will be used by the NEAT Logic and the corresponding building blocks (e.g., Pol-

icy Manager and Happy Eyeballs) to select and probe selected socket configurations. If a socket that

satisfies the application requirements has been successfully connected, an on_connected callback

function, if registered, will be invoked. Otherwise the on_error callback function will be invoked.

The application can register callback functions for on_socket_readable and

on_socket_writable events which will translate into poll parameters for the underlying socket.

The functions will be executed if the corresponding event applies.

The NEAT System buffers data that needs to be written. This is necessary to facilitate preservation

of message boundaries if the selected transport protocol is message-based. The on_all_written

event is triggered when all buffered data is written out to the OS socket.

In case of an error (e.g., NEAT internal error, socket error, socket being closed, etc.) an on_error

event callback function will be invoked.

Provided Transport Service Feature(s): This building block is part of the most basic functionality of

the NEAT System and it does not relate to any specific Transport Service Feature.

Some examples of the operation: Listing 9 presents a simple example of setting callback functions

and waiting for a callback function to be called. In function main a NEAT base loop structure and a

NEAT Flow are created (lines 21 and 28). Callback functions on_error and on_connected are set in

line 38. neat_open is called in line 45 and if it does not return an error the NEAT loop will be started

(line 46). In case of an error the on_error function will be invoked, otherwise on_connected will be

invoked which sets callback functions for on_all_written and on_readable.

1

2 static struct neat_flow_operations ops;

3

4 /*

5 Error handler

6 */

7 static neat_error_code on_error(struct neat_flow_operations *opCB)

8 {

9 exit(EXIT_FAILURE);

10 }

11

12 static neat_error_code on_connected(struct neat_flow_operations *opCB)

13 {

16 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

14 opCB->on_all_written = on_all_written;

15 opCB->on_readable = on_readable;

16 return NEAT_OK;

17 }

18

19 int main(int argc, char *argv[])

20 {

21 if ((ctx = neat_init_ctx()) == NULL) {

22 debug_error("could not initialise context");

23 result = EXIT_FAILURE;

24 goto cleanup;

25 }

26

27 // new neat flow

28 if ((flow = neat_new_flow(ctx)) == NULL) {

29 debug_error("neat_new_flow");

30 result = EXIT_FAILURE;

31 goto cleanup;

32 }

33

34 // set callbacks

35 ops.on_connected = on_connected;

36 ops.on_error = on_error;

37

38 if (neat_set_operations(ctx, flow, &ops)) {

39 debug_error("neat_set_operations");

40 result = EXIT_FAILURE;

41 goto cleanup;

42 }

43

44 // wait for on_connected or on_error to be invoked

45 if (neat_open(ctx, flow, argv[argc - 2], argv[argc - 1]) == NEAT_OK) {

46 neat_start_event_loop(ctx, NEAT_RUN_DEFAULT);

47 } else {

48 debug_error("neat_open");

49 result = EXIT_FAILURE;

50 goto cleanup;

51 }

52

53 ...

54 }

Listing 9: NEAT API Framework example.

Related building blocks:

• NEAT Logic (§ 2.1.3)

17 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

2.1.3 NEAT Logic

The NEAT Logic component is at the core of the NEAT System as part of the NEAT Framework compo-

nents and is responsible for providing functionalities behind the NEAT User API. It orchestrates and

“glues” together different components. NEAT Logic is not a monolithic piece of code separated from

other components, but its code is scattered throughout other components as well as the NEAT User

API.

Requests made via the NEAT User API are translated into function calls to the Policy Manager or

other building blocks; for instance, calls to select the transport protocols to be instantiated, or calls to

Handover and Signalling after receiving a set of candidates from the Policy Manager. Transport proto-

cols are configured via the relevant NEAT Transport components. NEAT Logic dispatches different de-

cisions returned by the Policy Manager by translating them into certain function calls related to NEAT

Components—e.g., by calling the Happy Eyeballs function(s) for SCTP/TCP or IPv6/IPv4. In simpler

terms, it glues different building blocks of the NEAT System together and makes them operational in

one uniform system.

NEAT Logic also maps the primitives and events exposed to the application (listed in § 3.3 of De-

liverable D1.2 [14]) to the primitives provided by each transport protocol.

Provided Transport Service Feature(s): There are no specific Transport Service Features associated

to this building block. However, the operation of NEAT Logic is essential for other building blocks to

provide their Transport Service Features.

Some examples of the operation: An example of NEAT Logic operation is when the neat_open call,

corresponding to the OPEN primitive (see D1.2 [14]), is used to open a NEAT Flow. The OPEN primitive

does not specify any specific transport protocol. After initialising the NEAT Flow’s address name and

port, neat_open registers a Happy Eyeballs callback function (open_he_callback) as an argument

of neat_he_lookup to return the outcome of the Happy eyeballs lookup as shown in Listing 10.

1 neat_error_code

2 neat_open(neat_ctx *mgr, neat_flow *flow, const char *name, const char *port)

3 {

4

5 ...

6

7 flow->name = strdup(name);

8 flow->port = strdup(port);

9 ...

10 return neat_he_lookup(mgr, flow, open_he_callback);

11 }

Listing 10: NEAT open function.

Related building blocks:

• NEAT Flow Endpoint Statistics (§ 2.1.5).

• Middlebox Traversal (§ 2.2.1).

• NEAT Flow Endpoint (§ 2.1.1).

18 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

• NEAT API Framework (callback) (§ 2.1.2).

• Connect to a name (§ 2.1.4).

• Happy Eyeballs (§ 2.3.1).

• Security (§ 2.2.2).

• NEAT Policy Manager (via Policy Interface) (§ 2.4.1).

2.1.4 Connect to a name

Connect to a name is the address resolver in the NEAT System. We initially only support resolving

names using plain DNS (i.e., no DNSSEC), but the component is designed in such a way that extending

the functionality is easy. One can for example imagine that a new name resolution scheme, protocol or

technique will be introduced during the lifetime of the NEAT project. An IP literal can also be provided,

in which case no translation will be provided.

The resolver fully supports multi-homed hosts. When the NEAT resolve function is called, the

query will by default be sent over all available (interface, address) tuples. Only A records are requested

over IPv4 addresses, while AAAA records are requested over the available IPv6 addresses.

Interface/address tuples are stored in a list which is dynamically updated based on events gen-

erated by the OS. All major OS support mechanisms for generating events when addresses/network

interfaces are added/removed. The mechanisms differ based on OS, so small shims are needed to

support different operating systems. However, the core code (and the content of the list) is platform-

independent.

The interface/address list is stored in the neat_ctx object introduced in § 2.1.1 and is available for

use by all other building blocks. For example the address monitoring functionality, combined with an

internal notification subsystem, will make reacting to interfaces going up/down more efficient across

all blocks.

Connecting to a name is fairly straightforward, but there are at least two items that will be discussed

and explored further as the design and implementation progress. The first is how the resolver can be

used to optimise Happy Eyeballs. If a name is resolved to an AAAA record over an interface that has a

IPv6 address, IPv6 will most likely work. Thus, assuming IPv6 is given priority, it will in most cases be

redundant to perform IPv4/IPv6 Happy Eyeballs. Having an IPv4 fallback is also trivial.

The second point that will be explored further is which interfaces should be used when resolv-

ing names. For instance, should an interface that only returns internal addresses be banned (unless

internal addresses are desirable)? Also, the policies could be used as input for filtering out interfaces.

In summary, the following features are provided by the Connect to a name component:

• Asynchronous DNS lookup: name resolving will not block the calling application.

• Address monitoring: (interface, address) tuples are stored in a dynamically updated list, which is

available to all building blocks.

• Multi-homing support: the resolver will resolve names using all (interface, address) tuples on a

host by default.

• Private network marking: names resolving to internal addresses will be marked and can be easily

filtered.

19 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

Some examples of the operation: In order to use the resolver, a developer has to create the NEAT

context first using the neat_init_ctx call. Then, the neat_resolver_init function has to be

called in order to set up the resolver. This function is passed two function pointers, one that will be

called when the resolver finishes (or times out), and one called when the resolver can be released.

After these two functions have been called, it is simply a matter of calling neat_getaddrinfo.

This function works very much similar to the POSIX-compliant getaddrinfo. In other words, it is

possible to limit which address family and transport protocol for the resolver to query/return. One

change from the normal getaddrinfo is that returning multiple transport protocols is supported.

When the resolving is done (or has failed, e.g., due to a timeout), the provided callback function is

called. If successful, this function is passed a list of all (interface, source address, destination address)

tuples. For example these can be used by a developer to connect to the desired host, or the list will

serve as input to the Happy Eyeballs component.

The current prototype of this building block does not perform any sorting of the resolver results,

but this functionality will be added in a next version. As a minimum requirement the sorting described

in RFC 3493 [9] should be implemented.

Provided Transport Service Feature(s): Connect to a name.

Related building blocks:

• Connect to a name has no dependencies on other building blocks except NEAT logic (§ 2.1.3), but

several building blocks may depend on the offered functionality. One example is Happy Eyeballs

(§ 2.3.1) that must be provided with a set of source/destination addresses to probe for IPv4/IPv6

and transport-protocol connectivity.

2.1.5 NEAT Flow Endpoint Statistics

The NEAT Flow Endpoint Statistics component is responsible for maintaining information about the

current state of the NEAT System, and for gathering usage statistics for both the overall NEAT System

and the respective NEAT Flows. This information resembles the information provided by netstat in

a traditional socket stack, but at the NEAT Flow level of detail. It can be used for application-level di-

agnostic purposes and for allowing applications to monitor the performance of application flows (e.g.,

measuring the throughput of NEAT Flows) to take decisions based on provided detailed information.

The information provided by the NEAT Flow Endpoint Statistics building block can be divided into

three sets: 1) current NEAT state, 2) NEAT Flow statistics, and 3) NEAT System statistics.

The current NEAT state set of information provides a detailed view of the current state of the NEAT

System. It provides a list of all NEAT Flows that are currently open on the NEAT System along with

details about their configuration. The NEAT Flow statistics set of information contains usage statistics

information for each NEAT Flow that has been created since the instantiation of the NEAT System. The

NEAT System statistics set of information contains system-wide usage statistics of the NEAT System.

Some examples of these three categories are listed below:

• Current NEAT state: flow ID, flow creation time, local name, local transport address(es), destina-

tion name, destination transport address(es), send queue size, protocol state, transport param-

eters (e.g., Nagle, DSCP, timeout, etc.), flow properties, interface(s) in use.

20 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

• NEAT Flow statistics: number of bytes sent/received, number of messages sent/received, num-

ber of messages dropped locally, number of handovers, connection duration, creation time.

• NEAT System statistics: total number of bytes sent/received, total number of messages sent/re-

ceived, total number of messages dropped locally, total number of opened/accepted/closed/

aborted connections, minimum/average/maximum flow duration, statistics on failures (errors)

reported by the NEAT System.

Applications that want to take advantage of this additional information provided by the NEAT Sys-

tem (i.e., Class-4 applications in Figure 2) can access it through the Diagnostics and Statistics Interface.

The scope of the information maintained by the NEAT Flow Endpoint Statistics is local to the applica-

tion that uses a particular NEAT System instance and is maintained within the application context as

long as the application is running. In contrast to other types of statistical information collected from

other components of the NEAT System (e.g., the interface and path statistics collected by CIB sources)

this information is not stored in any CIB and is not shared among any other NEAT System instances

that may be running on the same physical machine.

Some examples of the operation: An application can leverage the information provided by the NEAT

Flow Endpoint Statistics in order to verify that the provided Transport Services are consistent with

the requested features/properties, and also to trace decisions made by the NEAT System throughout

the progress of NEAT Flows which are normally not intended to be reported back to the application.

For example, an application can periodically request current state information in order to be aware

of any handover decisions (in case seamless handover is enabled) or changes in transport protocol

parameters made by the NEAT System.

Furthermore, the statistical information provided by this building block, combined with the other

types of statistics (e.g., path and interface statistics) that are also exposed through the Diagnostics and

Statistics Interface, can allow applications to monitor the actual application and network performance

in order to implement more specialised functionalities. For example this statistical information may

inform application decisions on controlling the behaviour of other applications (e.g., controlling in-

teractions with an SDN controller) in order to optimise performance.

Provided Transport Service Feature(s): This building block is meant mainly for diagnostic purposes

and therefore does not relate to any specific Transport Service Features.

Related building blocks:

• NEAT Logic (§ 2.1.3).

• Policy Manager (via Policy Interface) (§ 2.4.1).

2.2 NEAT Transport Components

The NEAT User API offers applications seamless access to the Transport Service Features of standard-

ised transport protocols, while ensuring packets get through the network in the presence of non-

supportive middleboxes, or challenging network paths, and providing a path to seamlessly introduce

new transport protocols or transport protocol features (e.g., a Less-Than-Best Effort (LBE) Transport

Service that considers data-delivery deadlines). While the selection of transport protocols are handled

21 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

by the NEAT Selection Components, the NEAT Transport Components are responsible for configuring

and managing the transport protocols.

The NEAT Transport components manage the combination of protocol parameters used (e.g., use

of Nagle and other socket options to create a low-delay TCP service) and the transport protocol com-

ponents that are enabled (e.g., activation of SCTP-PR or SCTP-PF respectively to create a partial relia-

bility service or a service supporting fast path failover).

2.2.1 Middlebox Traversal

The NEAT System needs to allow a transport to traverse a network path that may contain one or more

middleboxes. This requires additional functions to be implemented in the system. Also, the NEAT

System needs to enable peer-to-peer applications to work on all network types transparently. There

are a number of network scenarios where NATs or middleboxes will refuse to pass certain types of

network traffic, and inbound connections are difficult to establish through certain types of NAT. The

initial work has explored options for integrating such mechanisms into the set of NEAT Transport

Components.

A range of approaches are possible: methods that discover which transports can be used on a path

(addressed by NEAT Selection components), proxy methods (e.g., signalling components that utilise a

proxy in the network), encapsulation methods (e.g., transport components that allow one transport to

be used over another), and methods to communicate with middleboxes (e.g. signalling components

that enable explicit communication with a middlebox on the network path).

Two proxy methods were explored: SOCKS and TURN.

• SOCKS: A SOCKS [10] proxy was a common NAT traversal method to allow establishment of ex-

ternal connections through residential ISPs in the past, although less common now. More com-

monly now though, SOCKS is used as a means of tunnelling traffic through another application

since support for SOCKS has been added to many applications. Examples include OpenSSH and

Tor (TCP anonymous overlay network) clients, which both provide SOCKS interfaces to the tun-

nels they create.

• TURN: The TURN protocol [11] enables an endpoint to communicate with a peer endpoint,

where one or both are behind a restrictive NAT. Communication is achieved using an explicitly

chosen proxy to relay the transport protocol. TURN can utilise UDP-based encapsulation meth-

ods to support the middlebox traversal.

Current work in the NEAT project has investigated the code-base for integrating support for a

SOCKS [10] proxy, or for adding support to use a TURN server. These are potential candidates for a

next generation of the Happy Eyeballs component. Future work will design, implement, and integrate

an appropriate UDP-based encapsulation method for the NEAT System.

The presence of middleboxes can create connectivity issues through two basic mechanisms:

• Essential manipulation of packets: An essential manipulation is something the middlebox was

explicitly deployed to do.

• Accidental manipulation: A side effect of an essential manipulation, an effect of an implemen-

tation error in a middlebox, or an effect of a configuration or deployment error in a middlebox.

22 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

Accidental manipulations arise from a mismatch between the actual traffic on the network and the

assumptions made by the designers of the middlebox about that traffic. These tend to persist in the

network, given the long development and deployment cycles of networking equipment.

Middlebox Traversal will implement approaches the NEAT System will use to work around middle-

boxes which may corrupt or completely block traffic from a NEAT System through accidental manip-

ulation, and will implement probing techniques used by the NEAT System to detect middleboxes.

There are two functions that this building block provides:

• Middlebox traversal using a substrate protocol.

• Ability to use in-network functionality through the use of a substrate protocol for middlebox

cooperation.

Future work in Work Package 3 will explore how a NEAT Signalling and Handover component can

build on the encapsulation method to enable the NEAT System to cooperate with middleboxes on a

path where they have been detected by probing, and to explore whether such cooperation could be

beneficial. This building block may utilise the NEAT Policy Manager to access path resources within

the CIB.

To enable middlebox cooperation, we will collaborate with the Horizon 2020 MAMI Project3. MAMI

will develop an architecture providing a shim layer that contains the Middlebox Cooperation Protocol

(MCP), which allows transport and application protocols to selectively expose semantic information

to middleboxes while maintaining protocol level details inside an encrypted encapsulation protocol.

This shim layer once developed can be used as part of the NEAT System to provide signalling to mid-

dleboxes on path to enable traversal or to take advantage of beneficial in-network functionality.

Provided Transport Service Feature(s): There are no specific Transport Service Features associated

to this building block.

Related building blocks:

• NEAT Logic (§ 2.1.3).

• Happy Eyeballs (§ 2.3.1).

2.2.2 Security

The Security component of the NEAT System offers end-to-end encrypted communication for the ap-

plications using the NEAT System. Where complete security with integrity, authentication and encryp-

tion is not possible, opportunistic security will be supplied offering data confidentiality and integrity.

The NEAT System will provide secure connections using the TLS [5] and DTLS [12] protocols. TLS

will be used over TCP and DTLS for SCTP, UDP and UDPLite. More precisely, the possible combina-

tions that NEAT is expected to provide access to are: TLS/TCP/IP, DTLS/UDP/IP, DTLS/UDPLite/IP,

DTLS/SCTP/UDP/IP for a user-space SCTP stack, and DTLS/SCTP/IP for a kernel-level SCTP stack.

Supporting an SCTP/DTLS/UDP/IP stack might be optionally considered. The OpenSSL library [2]

that offers TLS and DTLS support will be used.

The use of the Security building block will depend on application requirements and configured

policies. Transport security can be configured in one of the following ways:

3https://mami-project.eu

23 of 40 Project no. 644334

https://mami-project.eu

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

• A secure connection is requested including a certificate verification.

• A secure connection is requested with an optional certificate verification: the Security compo-

nent will perform a certificate verification, but even if it fails the NEAT Flow will consider the

connection to be successfully established. An application can query the NEAT Flow to discover

whether the certificate has been verified or not.

• A secure connection is requested without a certificate verification: a certificate verification will

not be performed.

• A secure connection is optional: if a secure connection cannot be established the NEAT System

will not return an error, instead continue to use an insecure connection.

• A non-secure connection is requested: this option will not involve the Security component.

This corresponds to two NEAT Flow properties:

• Use security: required, optional, or do not use secure connection.

• Certificate verification: must be verified, verification is optional, or do not verify. This property

is only relevant if a secure connection is used.

A list of trusted Certification Authorities (CA) will be specified as a policy. Certificates and private

key files will be specified as a NEAT Flow parameter.

TLS and DTLS can be limited to advertise and accept only certain TLS/DTLS versions and cipher

suites—e.g. advertise only TLS 1.2 and the TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 cipher

suite. The TLS/DTLS versions and cipher suites to be accepted will be defined as policies. To extend

the flexibility of the NEAT System, an application can further limit or extend these lists for each indi-

vidual request by setting the corresponding NEAT Flow property.

Security will be added in the NEAT architecture as an additional layer above the operating system

socket. The NEAT Logic will call into the Security building block to perform data encryption and de-

cryption before data is written to/read from an operating system socket. During a connection estab-

lishment the Security building block will perform TLS or DTLS handshake and certificate verification

depending on application requirements.

The NEAT System can be extended to use TCPINC [3] as soon as it is made available.

Provided Transport Service Feature(s):

• NEAT flow security.

Related building blocks:

• NEAT Logic (§ 2.1.3).

2.3 Selection Components

The NEAT Selection components provide functions that map the requirements provided by the ap-

plication to one or more transport endpoints and a set of transport components that can realise the

required Transport Service. In the initial core transport system, Happy Eyeballs is the only Selection

component.

24 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

Algorithm 1 The Happy Eyeballs Algorithm
1: function HAPPYEYEBALLSCOMPONENT(in listOfCandidates : list of transport solutions, out selectedConnection : transport

connection)
2: Require: listOfCandidates is sorted in priority order
3: if length(listOfCandidates) = 0 then
4: return NONE;
5: else if length(listOfCandidates) = 1 then
6: return doConnectionAttempt(listOfCandidates.first());
7: else
8: currentCandidate← listOfCandidates.first();
9: threadCount← 0;

10: repeat
11: spawnConnectionAttempt(currentCandidate);
12: threadCount← threadCount + 1;
13: nextCandidate← listOfCandidates.nextCandidate(currentCandidate);
14: currentPriority← getPriority(currentCandidate);
15: nextPriority← getPriority(nextCandidate);
16: if currentPriority > nextPriority then
17: sleep(currentPriority,nextPriority);
18: end if
19: currentCandidate← nextCandidate;
20: until currentCandidate = listOfCandidates.last()
21: spawnConnectionAttempt(currentCandidate);
22: threadCount← threadCount + 1;
23: repeat
24: selectedConnection←waitFirstConnectionAttempt();
25: if selectedConnection 6= NONE then
26: return selectedConnection
27: else
28: threadCount← threadCount - 1;
29: end if
30: until threadCount = 0
31: end if
32: return NONE
33: end function

34: function DOCONNECTIONATTEMPT(in transportSolution : transport solution, out connection : transport connection)
35: connection← tryConnection(transportSolution);
36: if connection 6= NONE then
37: policyManager.cacheResultConnectionAttempt(transportSolution, SUCCESS);
38: return connection
39: else
40: policyManager.cacheResultConnectionAttempt(transportSolution, FAILURE);
41: return NONE
42: end if
43: end function

2.3.1 Happy Eyeballs

The Happy Eyeballs building block is part of the NEAT User Module and comprises one of the NEAT

Selection components. In the first part of the NEAT selection process, the Policy Manager combines

requirements from an application obtained through the NEAT User API, with available transport pro-

tocols, transport-protocol parameters, and feasible transport endpoints, i.e., IP addresses and port

numbers. Together, they are used to create a list of candidate transport solutions.

Each transport solution on the list has a priority, with a higher priority assigned to those that are

considered most appropriate. The list is sorted in descending order on the basis of the priority.

The pseudo-code for the current version of Happy Eyeballs is presented in Algorithm 1. The com-

ponent takes as input the list of candidate transport solutions created in the first part of the NEAT

selection process. It concurrently tries out each of the candidate transport solutions in the list and

finally returns a handle for the first successfully established connection.

It should be noted that the Happy Eyeballs algorithm is also able to handle the cases in which there

25 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

are no or only one candidate transport solution, i.e., cases when no “happy eyeballing” is actually

needed. In the former case the component returns with no selected transport solution, i.e., it tells the

caller that it failed to set up a NEAT Flow. In the latter case the outcome depends on whether or not

the component is able to establish a NEAT Flow using the single transport solution on the candidate

list.

As remarked in RFC 6555 [15], a Happy Eyeballs algorithm should not waste networking resources

by routinely making simultaneous connection attempts. To this end, the Happy Eyeballs component

instructs the Policy Manager to cache the outcome of previous connection attempts. Cached con-

nection attempts are valid for a configurable time after which they become invalid and have to be

repeated. The impact and efficiency of the Happy Eyeballs mechanism is being explored as part of the

evaluation of the core transport system, and the results will serve as input for future refinement of the

algorithm.

Some examples of the operation: As an example of how Happy Eyeballs works, consider the scenario

of a dual-stack IPv4/IPv6 client trying to setup a connection to a dual-stack IPv4/IPv6 server. Assume

the client and server support both TCP and SCTP.

The Policy Manager puts together a list of candidate transport solutions. As an example, assume

that the list contains TCP and SCTP over IPv6 (with equal priority) followed by TCP and SCTP over IPv4

(with equal priority), but the latter have a lower priority than their IPv6 counterparts. The NEAT Logic

calls Happy Eyeballs, which traverses the list, and spawns a separate thread for each candidate trans-

port solution. In our example, this means that two threads are created for TCP and SCTP over IPv4,

and two threads for TCP and SCTP over IPv6. Since the IPv4 transport solutions have a lower priority

than the IPv4 ones, the creation of the threads for the IPv4 transport solutions are delayed with respect

to the IPv6 transport solution threads. The length of the delay depends on the size of the difference

in priority. Within each thread, a connection attempt is made, and if the connection attempt is suc-

cessful, the thread returns a connection handle. Otherwise, it signals a failure by returning an invalid

connection handle. In both cases the outcome (connection attempt success or failure) is cached by

the Policy Manager through the Policy Interface. Assume that all connection attempts succeed and

therefore will be cached as successful connection attempts. In this case, since the IPv6 connection

attempts were started earlier than IPv4 counterparts, one of these attempts will be selected by Happy

Eyeballs.

Provided Transport Service Feature(s):

• NEAT selected transport protocol.

Related building blocks:

• NEAT Logic (§ 2.1.3).

• NEAT Policy Manager (via Policy Interface) (§ 2.4.1).

• Connect to a name (§ 2.1.4).

2.4 Policy Components

The NEAT Policy components allow the definition of policies which trigger the activation of additional

constraints for a given connection based on the properties requested by applications as well as known

26 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

network characteristics. As a result applications will be able to, e.g., utilise different protocols depend-

ing on the chosen network interface.

The Policy components are comprised of the following building blocks described next:

• Policy Manager (PM).

• Policy Information Base (PIB).

• Characteristics Information Base (CIB).

For each new NEAT Flow requested by a NEAT-enabled application the PM is responsible for gen-

erating a list of candidate transport solutions which meet the requirements defined by the application.

To this end, the PM takes into account all known information about the network stored in the CIB as

well as any applicable policies defined in the PIB.

The CIB is a repository storing information about available interfaces, supported protocols, net-

work properties and current/previous connections between endpoints (generated from passively or

actively acquired network metrics—see CIB sources in § 2.4.3). The PIB is a repository that contains

a collection of policies, where each policy consists of a set of rules linking a set of matching require-

ments to a set of preferred or mandatory transport characteristics. Policies can be added by the system

administrator, external entities or applications, and have different priorities.

The CIB and PIB entries are parsed to compute a list of potential candidates where each candi-

date contains an interface to be used, the transport protocol and associated options as well as other

characteristics of the network.

The PM is responsible for implementing a strategy which (as far as possible) satisfies the given

application requirements as well as the installed policies while taking into account the knowledge

about the available network resources. To achieve this the PM needs to prioritise and resolve any

conflicting policies, adapting them to changing network information. The PM may optionally manage

thresholds for when a CIB change triggers a new policy. Policies do not update within a NEAT Flow’s

lifetime, the PM is invoked only when a new NEAT Flow starts.

2.4.1 NEAT Policy Manager

The NEAT Policy Manager compiles all stored policies into a single set of valid rules. Conflicting poli-

cies are resolved by prioritising their categories: the application local policies over the global policies

and external system policies over NEAT System policies. Global NEAT policies are combined during

NEAT initialisation and serve as the default. Application local policies override the default policies

only for the application by which these were installed. There is no lifetime associated with policies.

They do not expire and have to be explicitly removed.

For each application the set of valid rules compiled from policies is static and will not be changed

during runtime. The PM may optionally implement some level of access control. If more NEAT com-

ponents require this functionality the addition of a NEAT-wide AAA block may be considered.

The NEAT Policy Manager can expose diagnostic information about the installed and/or active

policies. These statistics may be bundled with output from the NEAT Flow Endpoint Statistics (§ 2.1.5),

together with statistics from CIB, to enable useful debugging.

The PM requires three types of inputs:

• Application properties: a list of {key, value} pairs describing the properties that a NEAT-

enabled application desires for a newly opened NEAT Flow. The PM uses the approach described

27 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

in this section (see Examples below) to extract the most suitable candidates for the property re-

quirements. Application properties are passed to the Policy Manager by the NEAT Logic through

the Policy Interface.

• Policies: they are installed by OS developers, vendors or applications into a predefined location

in the file system. Each policy is stored as a JSON file [6] with a .policy file extension (the policy

file format is described in § 2.4.2).

• CIB sources (characteristics): they provide information about transport and interface character-

istics in a predefined location in the file system. Each CIB source is responsible for generating

and maintaining a CIB entry with a .cib extension in /var/neat/cib/. The CIB compiles this

information into an internal parseable data structure (e.g., a database or graph).

PM outputs: The output of the PM is a ranked JSON list containing a set of candidate transport so-

lutions and parameters for use by the NEAT Logic. The candidates should at least include a local in-

terface and/or transport protocol parameters. In addition, each candidate in the output list contains

information indicating:

• Which application requirements (properties) are satisfied for the given interface/protocol/des-

tination tuple.

• Which of the properties specified by the related evaluated policies have been verified and applied

(added to the candidate).

• Which of the properties specified by the related evaluated policies the PM was not able to verify.

Policy Interface (PI): The Policy Interface exposes a set of programming function calls that NEAT

building blocks have to invoke to make requests to the NEAT Policy Manager. It is an internal interface

enabling the communication between the Policy Manager and other NEAT components. It might also

be exposed to external modules in future versions. The PI accepts JSON data as function arguments

in order to achieve a decoupling from the rest of the NEAT System. In fact, the policy components de-

scribed in this section may become optional or may even be run outside the host system using them in

a future version of the NEAT System, e.g., for less powerful mobile devices. In the first implementation

of the PI, only one call is provided to request the list of candidates after a user or an application asks

for a Transport Service. As an example, assuming that a user/application makes a request to the NEAT

System for a transport connection to the IP address a.b.c.d with latency<150ms, the NEAT Logic

passes the PI a JSON input like this:

1 {

2 // metadata like user ID, application ID, ...

3 "remote_address": "a.b.c.d"

4 "latency_lt":"150" //latency less than

5 }

Listing 11: Example of JSON data passed to the Policy Interface.

28 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

Some examples of the operation: An example of the proposed workflow of the Policy Manager is

given below.

1. The Policy Manager receives a query from the NEAT Logic through the Policy Interface. The

query contains a list of properties (compiled in JSON format) originating from the application re-

quirements (e.g., capacity>100Mbps, bulk_download=True, delay_sensitive=False)

and the NEAT Logic itself (e.g., DNS lookup result).

2. The PM performs a CIB lookup and receives an initial set of transport option candidates which

(mostly) fulfil the query properties (i.e., by filtering the CIB by available interface types, path

characteristics over relevant interfaces). Each candidate is a list containing the matched query

properties as well as the associated properties of the potential connection (e.g., supported inter-

face features, TCP variants, cached remote endpoint capabilities). See § 2.4.3 for more details.

3. For each candidate the PM performs a PIB lookup. The lookup yields a set of policies which

match against the current candidate properties. Each policy may extend the candidate attribute

list with additional optional (preferred) properties. Further it may append mandatory (required)

properties (e.g., “do not use 3G for bulk data”). See § 2.4.2 for more details.

4. PM prunes all candidates which do not satisfy the required properties. Next, the PM ranks the

candidates based on the number of satisfied properties.

5. Finally the ranked candidate list is returned to the NEAT Logic. For each candidate the PM may

also return a list specifying which properties were satisfied. This information may be used by the

NEAT Logic to adjust the final selection.

Provided Transport Service Feature(s): While it does not actively offer any Transport Service Fea-

ture, this building block is indirectly involved in providing many Transport Service Features by other

building blocks—e.g. Selection of a secure interface, NEAT flow delay budget, NEAT flow low latency,

etc. can be mapped to policy attributes and combined into rules to define appropriate policies.

Related building blocks:

• CIB (§ 2.4.3).

• PIB (§ 2.4.2).

2.4.2 Policy Information Base (PIB)

This building block defines the PIB repository that stores policies in the NEAT System and is accessed

by the Policy Manager.

NEAT policies are based on the following logic: MATCH <set of provided properties> →
OPTIONAL /REQUIRED <set of new properties to be appended to flow candidate>.

The list of match conditions always implies that conditions are evaluated by performing an AND op-

eration, i.e., all conditions must be true for the policy to be triggered. To define an OR relationship

between conditions, multiple policies with a different set of conditions must be created.

A policy is defined in the JSON format [6] and typically contains the following attributes:

• name: name of the policy.

29 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

• description: human-readable description of the policy.

• priority: integer for priority level of the policy. Higher number means higher priority.

• match: dictionary of properties matched against each CIB candidate in order to trigger the pol-

icy. A policy is activated only if all of these properties are matched. Each attribute specifies the

key to lookup in CIB candidates and match against the provided value. A value can also be ANY

or empty, meaning that only its presence is important, not its value.

• optional: dictionary of properties that the policy adds to the final candidate as optional. If a

candidate already matches one or more of the optional properties from a policy, its rank within

the final candidate list increases.

• required: dictionary of mandatory properties that the policy wants to enforce. If the candidate

cannot satisfy any of these it is removed from the candidate list. If the PM cannot determine if

a required attribute is satisfied, it must indicate this in the candidate list and let the NEAT Logic

fall back to a default behaviour.

The name section is mandatory while the remaining sections can be omitted if empty. A policy

may optionally include other attributes that will be identified in following versions. The JSON format

keeps the sufficient level of freedom to extend and modify policy definition. Inside the PM each policy

has a unique identifier to avoid conflicts with policies/applications sharing the same name.

Policies may also be used to represent relationships between properties in a simpler and human-

readable way. For example, low_latency:true implies rtt_less_than:50 and

interface_latency_less_than:20.

We consider the following policy categories, each forming a separate PIB domain:

• Global NEAT: generic set coming from NEAT operations. It can only change (extended in order

not to break compatibility) at the next update of the NEAT System.

• Application specific: set by each application (e.g., Mozilla Firefox). It can only change at the next

update or installation of the application which it belongs to.

• Operating system specific: set by OS (e.g., Linux, Windows, Android, . . .). It can only change at

the next update or installation of the OS.

• Vendor specific: set by the end-host manufacturer (e.g., a handset maker). It can only change at

the next update of the firmware on the end host.

In the first PIB implementation, each policy is stored as a file in a predefined directory. Proposed

locations for policy files in the Linux OS are:

• /etc/neat/policy/OS/

• /etc/neat/policy/vendor/

• /etc/neat/policy/application/

• $HOME/.neat/policy/application/

30 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

In other OSes similar paths where the user executing NEAT is allowed access will be used. The

files are read by the PIB and compiled into a PIB repository which is not directly exposed outside

the NEAT Policy components. Read/write access to the PIB/CIB information by different entities is

controlled using the existing OS user/access mechanisms. During operation the PM may cache the

CIB/PIB information to optimise the performance. Optionally the internal state of the PM may be

exposed through an entry in procfswhen available in Unix-like OSes (or a similar tool in other OSes),

or appended to the PM output JSON structure.

Some examples of the operation: A sample of the proposed policy file format is given below:

1 {

2 "name":"policy A",

3 "description":"bulk file transfer",

4 "priority":"0",

5 "match":{

6 "is_wired_interface":true,

7 "interface_speed_ge":1000

8 },

9 "optional":{

10 "TCP_CC":"LBE"

11 },

12 "required":{

13 "MTU":"9600"

14 }

15 }

Listing 12: Policy file example.

Policies can be divided in three main types, based on the presence of certain attributes in their

definition:

• Enforcing policy: a policy without the match attribute but containing optional and/or

required attributes. It enforces some properties without checking any condition, e.g., “always

use TCP”.

• Filtering policy: a policy without the optional and required attributes but containing the

match attribute. It selects the best combination that satisfies the highest number of given con-

ditions without adding any new properties, e.g. “prefer wired interfaces with MTU size greater

than X”.

• Full policy: a policy containing the match attributes together with the optional and/or

required attributes. It applies new properties to filtered candidates, e.g., “if an interface is

wireless, use congestion control mechanism Y”.

Provided Transport Service Feature(s): There are no specific Transport Service Features associated

to this building block.

Related building blocks:

• NEAT Policy Manager (§ 2.4.1).

31 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

2.4.3 Characteristics Information Base (CIB)

The Characteristics Information Base (CIB) is a repository that stores information about hosts (e.g.,

available interfaces, supported protocols), connections (e.g., parameters used by previously estab-

lished transport sessions, hosts currently communicating) and the network (e.g., path properties). CIB

entries provide measured information, protocol details and capabilities about network entities used

in the NEAT System, specifically in the policy decision phase. A CIB source is defined as any module

which provides an input for the CIB in the correct format accepted by the CIB.

Some mechanisms to populate the CIB are already implemented in OSes as statistics/measure-

ment tools and will be made available as default CIB sources. Another class of CIB sources will be

provided by NEAT building blocks such as Happy Eyeballs (§ 2.3.1) which will store discovered trans-

port protocols and parameters supported along paths in the CIB for future reuse. External CIB sources

may be provided by device and OS vendors or third parties developing modules for active or passive

measurements, statistics and metadata collection.

The PM will use a pull mechanism to access information stored in the CIB whenever a new NEAT

Flow is initiated.

CIB architecture: The CIB is compiled from multiple inputs generated by CIB sources, like various

components of the NEAT System as well as external modules. In the first CIB implementation CIB en-

tries are simple files stored in a predefined folder, which location depends on the OS used. Therefore,

from the CIB perspective a CIB source equates to a file in that folder. Each CIB source generates a JSON

file containing {key, value} pairs describing a set of attributes for a given resource. In the first CIB

implementation, trust is managed by relying on existing OS roles and permissions: CIB sources are

allowed to create and update files in the CIB repository folder as long as the OS user executing the task

is allowed to write in that folder. Future versions of the CIB may switch to a more complex authenti-

cation and trust management mechanism.

Three types of CIB sources have been initially defined:

• local: sources describing a local endpoint of a connection (e.g., interface information collected

from the OS).

• remote: sources describing remote endpoints of a connection (e.g., destination host with IP and

port).

• connection: attributes of an established connection such as transport protocol and associated

options. This type of CIB may also be used to store information about paths, collected using

active measurements or an external controller.

Each CIB entry contains a unique index (idx) which may be referenced by any another CIB entry.

The following example illustrates the CIB entries associated (through their indices) with three NEAT

Flows originating from the same local interface:

[local_X] <-> [connection_Y] <-> [remote_Z]

[local_X] <-> [connection_U] <-> [remote_Z]

[local_X] <-> [connection_V] <-> [remote_W]

The CIB parses all CIB entries to generate an internal list containing all active and archived con-

nections, containing an arbitrary number of {key, value} pairs describing the characteristics of the

32 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

connections and the reference to all other related CIB entries. The CIB exposes an interface which the

PM may use to obtain a list of connections or interfaces matching a set of properties requested by an

application.

CIB lookup workflow: Local entries are continuously maintained—e.g., by a module monitoring the

local OS capabilities. Whenever a new NEAT Flow is established, the responsible NEAT module cre-

ates a corresponding remote entry as well as a connection entry containing the negotiated attributes.

These entries expire after a fixed time after the connection has been closed (time to live (TTL)). The

value of the TTL for remote CIB entries will be defined based on the initial experiences with the PM.

We assume that a CIB lookup request contains a list of {key, value} pairs including the address

of the NEAT destination. When the PM performs a lookup the CIB initially checks whether a matching

remote CIB entry already exists in the repository. If this is the case the CIB returns the properties of

the associated connection and the corresponding local CIB entry. If the remote destination is new the

CIB may return a set of inferred properties supported by the local interfaces by evaluating previously

established connections to other remote destinations.

The PM receives a ranked list of query results which best meet the application requirements. The

list is evaluated by the PM to apply NEAT policies and generate the candidate list which will be re-

turned to the NEAT Logic.

Some examples of the operation: Example of NEAT-provided CIB sources are:

• Statistics and metadata provided by the operating system (e.g., network interface, socket statis-

tics, battery drain, etc.).

• Statistics about path support from completed transport sessions and Happy Eyeballs (e.g., trans-

port support and IP version).

• Path characteristics derived from various passive and active measurement techniques (e.g., net-

work controller, network probes).

• Interface characteristics such as metadata (e.g., signal strength, type), passive and active mea-

surements.

The following listings show sample CIB entries and their relationship:

• A local interface named en3, whose characteristics are generated by ethtool from the OS (List-

ing 13).

• A remote interface known by a previous NEAT Flow, entry initiated by the Happy Eyeball compo-

nent (Listing 14).

• An active or archived NEAT Flow involving the two endpoints (Listing 15).

1 {

2 "cib_source":"ethtool", // who generated the CIB file

3 "type":"local", // CIB source type

4 "idx":"319", // internal identifier

5 "interface":"en3", // properties of the resource

6 "is_wired_interface":"true",

33 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

7 "MTU":"9600",

8 "local_address":"10.10.3.1"

9 }

Listing 13: Local interface.

1 {

2 "cib_source":"happy_eyeballs",

3 "type":"remote",

4 "idx":"234", // internal identifier

5 "neat_flow_idx":["111FA"], // reference to the CIB identifier for the related NEAT

Flow

6 "address":"23:::23:12",

7 "port":"8081"

8 }

Listing 14: Remote endpoint.

1 {

2 "cib_source":"happy_eyeballs",

3 "type":"neat_flow",

4 "idx":"111FA", // internal identifier

5 "timestamp":"13452350",

6 "local_idx":"319", // reference to the local CIB source identifier

7 "remote_idx":"234", // reference to the remote CIB source identifier

8 "protocol":"TCP",

9 "TCP_CC":"cubic" // TCP congestion control

10 }

Listing 15: Active or previous NEAT Flow.

Provided Transport Service Feature(s): There are no specific Transport Service Features associated

to this building block.

Related building blocks:

• NEAT Policy Manager (§ 2.4.1).

3 Conclusions

This document has presented a first version of the low-level NEAT Core Transport System; the ba-

sic components necessary to provide NEAT Transport Services in the API described in Deliverable

D1.2 [14]. This was developed as the first stage of the design and development efforts undertaken in

Task 2.1. The building blocks ensure basic functionalities provided by four NEAT component group-

ings: NEAT Framework, NEAT Transport, NEAT Selection and NEAT Policy.

In Section 1 we discussed the notion of low-level and high-level functionalities provided by NEAT

and provided an overview of the NEAT architecture and Transport Services provided by the API. We

also introduced low-level components required to provide these Transport Services. In Section 2 we

34 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

discussed each of these low-level components in more detail and identified their internal dependen-

cies, using examples of use or operation and C code-snippets.

A first implementation of some key building blocks discussed in this document has been finalised,

while other building blocks continue to be developed by the consortium. The final outcome of these

efforts will be reported in Deliverable D2.2.

Deliverable D2.2 will also report on the implementation of the high-level components developed

in Task 2.2, which instantiate other functions beneath the API presented in Deliverable D1.2 [14]. D2.2

will describe how these high-level functions relate to and use the low-level components presented in

this deliverable.

Key work in Work Package 2 during the second year of the project will explore:

• A set of Happy Eyeballs mechanisms and the resource requirements these place on the CPU and

memory at the server side to confirm or modify our choice of selection algorithm.

• Per-message local drop precedence within SCTP streams.

• Local flow scheduling priority among a set of NEAT Flows, allowing prioritisation among differ-

ent NEAT Flows that may share the same bottleneck or chosen by the NEAT Policy Manager.

At the conclusion of Tasks 2.1 and 2.2 NEAT will report on the evolution of the complete core trans-

port system, describing any developments that extend the functions described in this deliverable.

35 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

References

[1] libuv library. [Online]. Available: http://libuv.org/

[2] OpenSSL library. [Online]. Available: https://www.openssl.org/

[3] TCP increased security working group. [Online]. Available: https://datatracker.ietf.org/wg/

tcpinc/charter/

[4] V. Cerf, Y. Dalal, and C. Sunshine, “Specification of Internet Transmission Control Program,” RFC

675, Internet Engineering Task Force, Dec. 1974. [Online]. Available: http://www.ietf.org/rfc/

rfc675.txt

[5] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246

(Proposed Standard), Internet Engineering Task Force, Aug. 2008, updated by RFCs 5746, 5878,

6176, 7465, 7507, 7568, 7627, 7685. [Online]. Available: http://www.ietf.org/rfc/rfc5246.txt

[6] ECMA. (2013) The JSON data interchange format. [Online]. Available: http://www.

ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

[7] G. Fairhurst, B. Trammell, and M. Kuehlewind, “Services provided by IETF transport protocols

and congestion control mechanisms,” Internet Draft draft-ietf-taps-transports, Dec. 2015, work

in progress. [Online]. Available: https://tools.ietf.org/html/draft-ietf-taps-transports-08.txt

[8] G. Fairhurst, T. Jones, Z. Bozakov, A. Brunstrom, D. Damjanovic, T. Eckert, K. R. Evensen, K.-J.

Grinnemo, A. F. Hansen, N. Khademi, S. Mangiante, P. McManus, G. Papastergiou, D. Ros,

M. Tüxen, E. Vyncke, and M. Welzl, “NEAT Architecture,” The NEAT Project (H2020-ICT-05-2014),

Deliverable D1.1, Dec. 2015. [Online]. Available: https://www.neat-project.org/publications/

[9] R. Gilligan, S. Thomson, J. Bound, J. McCann, and W. Stevens, “Basic Socket Interface Extensions

for IPv6,” RFC 3493 (Informational), Internet Engineering Task Force, Feb. 2003. [Online].

Available: http://www.ietf.org/rfc/rfc3493.txt

[10] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, “SOCKS Protocol Version 5,”

RFC 1928 (Proposed Standard), Internet Engineering Task Force, Mar. 1996. [Online]. Available:

http://www.ietf.org/rfc/rfc1928.txt

[11] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal Using Relays around NAT (TURN): Relay

Extensions to Session Traversal Utilities for NAT (STUN),” RFC 5766 (Proposed Standard),

Internet Engineering Task Force, Apr. 2010. [Online]. Available: http://www.ietf.org/rfc/rfc5766.

txt

[12] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security Version 1.2,” RFC 6347

(Proposed Standard), Internet Engineering Task Force, Jan. 2012, updated by RFC 7507. [Online].

Available: http://www.ietf.org/rfc/rfc6347.txt

[13] M. Welzl, M. Tuexen, and N. Khademi, “On the usage of transport service features provided by

IETF transport protocols,” Internet Draft draft-ietf-taps-transports, Jan. 2016, work in progress.

[Online]. Available: https://tools.ietf.org/html/draft-ietf-taps-transports-usage-00.txt

36 of 40 Project no. 644334

http://libuv.org/
https://www.openssl.org/
https://datatracker.ietf.org/wg/tcpinc/charter/
https://datatracker.ietf.org/wg/tcpinc/charter/
http://www.ietf.org/rfc/rfc675.txt
http://www.ietf.org/rfc/rfc675.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://tools.ietf.org/html/draft-ietf-taps-transports-08.txt
https://www.neat-project.org/publications/
http://www.ietf.org/rfc/rfc3493.txt
http://www.ietf.org/rfc/rfc1928.txt
http://www.ietf.org/rfc/rfc5766.txt
http://www.ietf.org/rfc/rfc5766.txt
http://www.ietf.org/rfc/rfc6347.txt
https://tools.ietf.org/html/draft-ietf-taps-transports-usage-00.txt

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

[14] M. Welzl, A. Brunstrom, D. Damjanovic, K. Evensen, T. Eckert, G. Fairhurst, N. Khademi,

S. Mangiante, A. Petlund, D. Ros, and M. Tüxen, “First Version of Services and APIs,”

The NEAT Project (H2020-ICT-05-2014), Deliverable D1.2, Mar. 2016. [Online]. Available:

https://www.neat-project.org/publications/

[15] D. Wing and A. Yourtchenko, “Happy Eyeballs: Success with Dual-Stack Hosts,” RFC

6555 (Proposed Standard), Internet Engineering Task Force, Apr. 2012. [Online]. Available:

http://www.ietf.org/rfc/rfc6555.txt

37 of 40 Project no. 644334

https://www.neat-project.org/publications/
http://www.ietf.org/rfc/rfc6555.txt

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

A NEAT Terminology

This section defines terminology used to describe NEAT. These terms are used throughout this docu-

ment.

Application An entity (program or protocol module) that uses the transport layer for end-to-end de-

livery of data across the network (this may also be an upper layer protocol or tunnel encapsula-

tion). In NEAT, the application data is communicated across the network using the NEAT User

API either directly, or via middleware or a NEAT Application Support API on top of the NEAT User

API.

Characteristics Information Base (CIB) The entity where path information and other collected data

from the NEAT System is stored for access via the NEAT Policy Manager.

NEAT API Framework A callback-based API in NEAT. Once the NEAT base structure has started, using

this framework an application can request a connection (create NEAT Flow), communicate over

it (write data to the NEAT Flow and read received data from the NEAT Flow) and register callback

functions that will be executed upon the occurrence of certain events.

NEAT Application Support Module Example code and/or libraries that provide a more abstract way

for an application to use the NEAT User API. This could include methods to directly support a

middleware library or an interface to emulate the traditional Socket API.

NEAT Component An implementation of a feature within the NEAT System. An example is a “Happy

Eyeballs” component to provide Transport Service selection. Components are designed to be

portable (e.g. platform-independent).

NEAT Diagnostics and Statistics Interface An interface to the NEAT System to access information

about the operation and/or performance of system components, and to return endpoint statis-

tics for NEAT Flows.

NEAT Flow A flow of protocol data units sent via the NEAT User API. For a connection-oriented flow,

this consists of the PDUs related to a specific connection.

NEAT Flow Endpoint The NEAT Flow Endpoint is a NEAT structure that has a similar role to the Trans-

mission Control Block (TCB) in the context of TCP. This is mainly used by the NEAT Logic to

collect the information about a NEAT Flow.

NEAT Framework The Framework components include supporting code and data structures needed

to implement the NEAT User Module. They call other components to perform the functions

required to select and realise a Transport Service. The NEAT User API is an important component

of the NEAT Framework; other components include diagnostics and measurement.

NEAT Logic The NEAT Logic is at the core of the NEAT System as part of the NEAT Framework com-

ponents and is responsible for providing functionalities behind the NEAT User API.

NEAT Policy Manager Part of the NEAT User Module responsible for the policies used for service se-

lection. The Policy Manager is accessed via the (user-space) Policy Interface, portable across

platforms. An implementation of the NEAT Policy Manager may optionally also interface to ker-

nel functions or implement new functions within the kernel (e.g. relating to information about

a specific network interface or protocols).

38 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

NEAT Selection Selection components are responsible for choosing an appropriate transport end-

point and a set of transport components to create a Transport Service Instantiation. This utilises

information passed through the NEAT User API, and combines this with inputs from the NEAT

Policy Manager to identify candidate services and test the suitability of the candidates to make a

final selection.

NEAT Signalling and Handover Signalling and Handover components enable optional interaction

with remote endpoints and network devices to signal the service requested by a NEAT Flow, or to

interpret signalling messages concerning network or endpoint capabilities for a Transport Ser-

vice Instantiation.

NEAT System The NEAT System includes all user-space and kernel-space components needed to re-

alise application communication across the network. This includes all of the NEAT User Module,

and the NEAT Application Support Module.

NEAT User API The API to the NEAT User Module through which application data is exchanged. This

offers Transport Services similar to those offered by the Socket API, but using an event-driven

style of interaction. The NEAT User API provides the necessary information to allow the NEAT

User Module to select an appropriate Transport Service. This is part of the NEAT Framework

group of components.

NEAT User Module The set of all components necessary to realise a Transport Service provided by

the NEAT System. The NEAT User Module is implemented in user space and is designed to be

portable across platforms. It has five main groupings of components: Selection, Policy (i.e. the

Policy Manager and its related information bases and default values), Transport, Signalling and

Handover, and the NEAT Framework. The NEAT User Module is a subset of a NEAT System.

Policy Information Base (PIB) The rules used by the NEAT Policy Manager to guide the selection of

the Transport Service Instantiation.

Policy Interface (PI) The interface to allow querying of the NEAT Policy Manager.

Stream A set of data blocks that logically belong together, such that uniform network treatment would

be desirable for them. A stream is bound to a NEAT Flow. A NEAT Flow contains one or more

streams.

Transport Address A transport address is defined by a network-layer address, a transport-layer pro-

tocol, and a transport-layer port number.

Transport Service A set of end-to-end features provided to users, without an association to any given

framing protocol, which provides a complete service to an application. The desire to use a spe-

cific feature is indicated through the NEAT User API.

Transport Service Feature A specific end-to-end feature that the transport layer provides to an appli-

cation. Examples include confidentiality, reliable delivery, ordered delivery and message-versus-

stream orientation.

Transport Service Instantiation An arrangement of one or more transport protocols with a selected

set of features and configuration parameters that implements a single Transport Service. Exam-

ples include: a protocol stack to support TCP, UDP, or SCTP over UDP with the partial reliability

option.

39 of 40 Project no. 644334

D2.1
First Version of Low-Level Core Transport System

Public
Rev. 1.0/ March 1, 2016

Disclaimer

The views expressed in this document are solely those of the author(s). The European Com-

mission is not responsible for any use that may be made of the information it contains.

All information in this document is provided “as is”, and no guarantee or warranty is given

that the information is fit for any particular purpose. The user thereof uses the information

at its sole risk and liability.

40 of 40 Project no. 644334

	List of Abbreviations
	Introduction
	Low-level and high-level functions
	Overview of the NEAT Architecture
	Overview of the services provided by the NEAT API
	Overview of the low-level components required to provide the services

	Low-level Transport Functions
	NEAT Framework Components
	NEAT Flow Endpoint
	NEAT API Framework (callback)
	NEAT Logic
	Connect to a name
	NEAT Flow Endpoint Statistics

	NEAT Transport Components
	Middlebox Traversal
	Security

	Selection Components
	Happy Eyeballs

	Policy Components
	NEAT Policy Manager
	Policy Information Base (PIB)
	Characteristics Information Base (CIB)

	Conclusions
	References
	NEAT Terminology

